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Introduction

Supersymmetry is well known to have deep consequences.

In the context of higher spin gauge theories, supersymmetry is
generalized to include fermionic symmetries described by
parameters of spin 3/2, 5/2 etc

Do these symmetries also have interesting implications ?

In particular, do they imply “hypersymmetry" bounds ?

The answer turns out to be affirmative, as can be seen for
instance by analysing anti-de Sitter hypergravity in 2+1
dimensions.

Based on joint work with A. Pérez, D. Tempo, R. Troncoso (2015)
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Introduction

I will successively discuss :

Anti-de Sitter Einstein gravity in three spacetime dimensions

Anti-de Sitter Hypergravity in three spacetime dimensions

Charges and asymptotic analysis

Hypersymmetry bounds and black holes

Conclusions
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Anti-de Sitter group in three dimensions

The AdS algebra in D dimensions is so(D−1,2)

In three dimensions, this gives so(2,2).

But so(2,2) is isomorphic to so(2,1)⊕ so(2,1)

and so(2,1) ' sl(2,R)

so that so(2,2) is isomorphic to sl(2,R)⊕ sl(2,R).

Note : one has also sl(2,R) ' sp(2,R) ' su(1,1) and thus the chain
of isomorphisms so(2,1) ' sl(2,R) ' sp(2,R) ' su(1,1)
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Chern-Simons reformulation

AdS gravity can be reformulated as an sl(2,R)⊕ sl(2,R)
Chern-Simons theory.

The action reads

I[A+,A−] = ICS[A+]− ICS[A−]

where A+, A− are connections taking values in the algebra sl(2,R),

and where ICS[A] is the Chern-Simons action

ICS[A] = k

4π

∫
M

Tr

(
A∧dA+ 2

3
A∧A∧A

)
.

The parameter k is related to the (2+1)-dimensional Newton
constant G as k = `/4G, where ` is the AdS radius of curvature.
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AdS pure gravity and sl(2,R)⊕ sl(2,R)
Chern-Simons theory

The relationship between the sl(2,R) connections A+, A− and the
gravitational variables (dreibein and spin connection) is

A+a
µ =ωa

µ+
1

`
ea
µ and A−a

µ =ωa
µ−

1

`
ea
µ,

in terms of which one finds indeed

I[e,ω] = 1

8πG

∫
M

d3x

(
1

2
eR+ e

`2

)
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AdS pure gravity and sl(2,R)⊕ sl(2,R)
Chern-Simons theory

The absence of local degrees of freedom manifests itself in the
Chern-Simons formulation through the fact that the connection
is flat,

F = 0,

which implies that one can locally set it to zero, A = 0, by a gauge
transformation.

Note that the Chern-Simons gauge transformations enable one
to go to gauges where the triad is degenerate.
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D = 3 Pure N-extended Supergravities as
Chern-Simons theories

The Chern-Simons formulation is very convenient because it
allows for generalizations.

For instance, supergravity is obtained by simply replacing sl(2,R)
by a superalgebra that contains it.

The subalgebra sl(2,R) is called the “gravitational subalgebra".

(Really, sl(2,R)⊕ sl(2,R) but I will consider explicitly only one
sector from now on.)

In supergravity, the bosonic subalgebra is the direct sum
sl(2,R)⊕G , where G is the “R-symmetry algebra".

The fermionic generators transform in the 2 of sl(2,R), which
might come with a non-trivial multiplicity (extended
supergravities).

The first condition ensures that the theory contains gravity and
only bosonic fields of “spins" 2 and 1 (and a single “graviton").
The second condition ensures that spinors are spin- 3

2 fields.
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by a superalgebra that contains it.

The subalgebra sl(2,R) is called the “gravitational subalgebra".

(Really, sl(2,R)⊕ sl(2,R) but I will consider explicitly only one
sector from now on.)

In supergravity, the bosonic subalgebra is the direct sum
sl(2,R)⊕G , where G is the “R-symmetry algebra".

The fermionic generators transform in the 2 of sl(2,R), which
might come with a non-trivial multiplicity (extended
supergravities).

The first condition ensures that the theory contains gravity and
only bosonic fields of “spins" 2 and 1 (and a single “graviton").
The second condition ensures that spinors are spin- 3

2 fields.
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Higher spin gauge theories

But one may relax these conditions !

This leads to higher spin gauge theories in 3D.

In 3D, the higher spin gauge theories are simply given by a
Chern-Simons theory with appropriate “higher spin"
(super)algebra.

These higher spin (super)algebras are obtained by lifting the
above restrictions that limited the spin content to ≤ 2.

One then considers general (super)algebras containing the
gravitational subalgebra sl(2,R), but with their bosonic
subalgebra not necessarily of the form sl(2,R)⊕G .
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Hypergravity

The case of interest to us is obtained by replacing sl(2,R) by
osp(1,4).

More precisely, one replaces the gauge algebra sl(2,R)⊕ sl(2,R) by
osp(1|4)⊕osp(1|4), the bosonic subalgebra of which is
sp(4)⊕ sp(4). The resulting theory contains automatically gravity
since sl(2,R) ⊂ sp(4).

The possibility to have a finite number of higher spin gauge fields
is in contrast with D > 3 where one needs an infinite number of
higher spin gauge fields to get a consistent theory. But what is the
spin content ?

Assuming principal embedding of sl(2,R) in sp(4), one gets one
spin-2 field, one spin-4 field and one spin- 5

2 field.

The spin-4 field decouples in the limit of zero cosmological
constant, where one gets the theory of Aragone and Deser (1984).
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Some conventions

Basis of osp(1|4) :[
Li,Lj

]
= (

i− j
)

Li+j ,[
Li,Um

]= (3i−m)Ui+m ,[
Li,Sp

]= (
3

2
i−p

)
Si+p ,

[Um,Un] = 1

223
(m−n)

((
m2 +n2 −4

)(
m2 +n2 − 2

3
mn−9

)
− 2

3
(mn−6)mn

)
Lm+n

+ 1

6
(m−n)

(
m2 −mn+n2 −7

)
Um+n ,[

Um,Sp
]= 1

233

(
2m3 −8m2p+20mp2 +82p−23m−40p3

)
Si+p ,

{
Sp,Sq

}= Up+q + 1

223

(
6p2 −8pq+6q2 −9

)
Lp+q .

Here Li, with i = 0,±1, stand for the spin-2 generators that span the
gravitational sl (2,R) subalgebra, while Um and Sp, with
m = 0,±1,±2,±3 and p =± 1

2 ,± 3
2 , correspond to the spin-4 and

fermionic spin- 5
2 generators, respectively.
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Dynamics

The action is
I = ICS

[
A+]− ICS [A−]

with

ICS [A] = k4

4π

∫
str

[
AdA+ 2

3
A3

]
.

Here, the level, k4 = k/10, is expressed in terms of the Newton
constant and the AdS radius according to k = `/4G.

str [· · · ] stands for the supertrace of the fundamental (5×5)
matrix representation.

The connection reads

A+ = Ai
µLi +Bm

µ Um +ψp
µSp

and a similar expression holds for A−.
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Dynamics

In terms of the two osp(1|4) connections A+ and A−, the metric
and spin-4 field are defined by

gµν ∼ str(eµeν) , hµνρσ ∼ str(eµeνeρeσ)+astr(e(µeν)str(eρeσ)),

where eµ ∼ A+
µ −A−

µ ,

and the spin- 5
2 field is ψµa, γaψµa = 0 (ψα

µa ∼ψp
µ).

The action is S[gµν,hµνρσ,ψµa] = SE +SF +S
5
2 +SI

where SE is the Einstein action, SF the (covariantized) Fronsdal
action for a spin-4 field, S

5
2 the (covariantized) spin- 5

2 action and
SI stands for the higher order interaction terms necessary to
make the theory consistent.

These interaction terms are not known in closed form. They can
be constructed perturbatively.
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Absence of a well-defined geometry

An important (and puzzling !) feature of higher spin gauge
theories is that the metric gµν transforms under the gauge
transformations of the spin-4 gauge field hλµνρ .

There is no known definition of a geometry that would be
invariant under higher spin gauge symmetries.

In particular, given a solution to the field equation, there is no
known way to ascribe to it a well-defined causal structure.

We shall come back to that question later.
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Boundary conditions - Pure gravity

We first consider pure gravity

The boundary conditions were first investigated in the metric
formulation and a precise definition of what is meant by
“asymptotically anti-de Sitter metric" was given.

These boundary conditions can be reformulated in terms of the
Chern-Simons connection.

It turns out that (in a suitable gauge) they take exactly the same
form as the so-called Drinfeld-Sokolov Hamiltonian reduction
conditions, namely

A±
ϕ

(
r,ϕ

) −→
r→∞ L±1 − 2π

k
L ± (

ϕ
)

L∓1 +O

(
1

r

)
,

and

A±
r −→

r→∞ O

(
1

r

)
.

Coussaert, Henneaux, van Driel 1995
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Asymptotic symmetries

The “asymptotic symmetries" are those gauge transformations
δA±

i = ∂iΛ
±+ [A±

i ,Λ±] that preserve the boundary conditions, i.e.,
such that A±

i +δA±
i fulfills also the boundary conditions.

They are given by

Λ± −→
r→∞ ±ε±

(
ϕ

)(
L±1 − 2π

k
L ± (

ϕ
)

L∓1

)
∓ε′±

(
ϕ

)
L0 ± 1

2
ε′′±

(
ϕ

)
L∓1

The functions ε±
(
ϕ

)
are arbitrary functions of ϕ and parametrize

the asymptotic symmetries.
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Generators of asymptotic symmetries - Virasoro
algebra

Furthermore, one easily finds that the generators of the
asymptotic symmetry algebra are given explictly by the L ±’s
themselves (when the constraints hold) and read explicitly

Q±[ε±] =±
∫

r→∞
ε±

(
ϕ

)
L ± (

ϕ
)

dϕ

These generators obey the Virasoro algebra.
More precisely, the Fourier components L ±

n obey, in terms of the
Poisson bracket, the Virasoro algebra with the classical central
charge c = 6k = 3`/2G,

i
[
L ±

m,L ±
n

]
PB = (m−n)L ±

m+n +
k

2
m3δm+n,0.

and commute between themselves
[
L +

m,L −
n

]
PB = 0 (2D

conformal algebra).
Thus, the Virasoro algebra emerges in the reduction procedure
enforced by the AdS boundary conditions.
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Hypergravity

The same asymptotic analysis can be performed for hypergravity.

One gets an enhancement of the asymptotic algebra, from the
Virasoro algebra to the W(2, 5

2 ,4)-superalgebra, which contains the

Virasoro generators but also generators of higher conformal
weights.

How does this proceed ?

Sugra : Henneaux, Maoz, Schwimmer (2000) ;
Higher spins : S.-J. Rey + MH (2010) ; A. Campoleoni, S.
Fredenhagen, S. Pfenninger, S. Theisen (2010)
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Boundary conditions

The asymptotic conditions that generalize those found for pure
gravity are again of Drinfeld-Sokolov type

A±
ϕ

(
r,ϕ

) −→
r→∞ L±1−2π

k
L ± (

ϕ
)

L∓1+ π

5k
U ± (

ϕ
)

U∓3−2π

k
ψ± (

ϕ
)
S∓ 3

2
,

Again, the non trivial fields L ± (
ϕ

)
, U ± (

ϕ
)

and ψ±(ϕ) appear
along the lowest (highest)-weight generators.

These boundary conditions are invariant under gauge
transformations that are generated by

Q± [
ε±,χ±,ϑ±

]=±
∫

dϕ
(
ε±L ±+χ±U ±− iϑ±ψ±)

,

with ε±, χ± and ϑ± arbitrary functions of ϕ. The “charges"
L ± (

ϕ
)
, U ± (

ϕ
)

and ψ±(ϕ) form the W(2, 5
2 ,4)-superalgebra.
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W(2, 5
2 ,4)-superalgebra

i [Lm,Ln]PB = (m−n)Lm+n + k

2
m3δ0

m+n ,

i [Lm,Un]PB = (3m−n)Um+n ,

i
[
Lm,ψn

]
PB =

(
3

2
m−n

)
ψm+n ,

i [Um,Un]PB = 1

2232 (m−n)
(
3m4 −2m3n+4m2n2 −2mn3 +3n4

)
Lm+n

+ 1

6
(m−n)

(
m2 −mn+n2

)
Um+n − 233π

k
(m−n)Λ(6)

m+n

− 72π

32k
(m−n)

(
m2 +4mn+n2

)
Λ(4)

m+n + k

2332
m7δ0

m+n ,

i
[
Um,ψn

]
PB = 1

223

(
m3 −4m2n+10mn2 −20n3

)
ψm+n − 23π

3k
iΛ(11/2)

m+n

+ π

3k
(23m−82n)Λ(9/2)

m+n ,

i
[
ψm,ψn

]
PB = Um+n + 1

2

(
m2 − 4

3
mn+n2

)
Lm+n + 3π

k
Λ(4)

m+n + k

6
m4δ0

m+n ,

The generators Un, ψn have respective conformal weights 4 and 5
2 ;

unchanged central charge c = 6k = 3`
2G (two copies).
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Hypersymmetry bounds

The fermions can be anti-periodic or periodic.

We assume here that they are periodic as this is the case relevant
to black holes. We also assume that they are only zero-modes
(“rest frame").

The quantum version of the Poisson bracket
[
ψ0,ψ0

]
PB reads

(2π)−1 (
ψ̂0ψ̂0 + ψ̂0ψ̂0

)= 2

2π
ψ̂2

0 =U + 3π

k
L 2 ≥ 0.

(The quantum W (2,5/2,4)-superalgebra, with the unitarity
conditions L†

m = L−m, U†
m = U−m, ψ†

m =ψ−m implied by the
classical reality conditions, admits arbitrarily large values of the
central charge.)

This is a nonlinear bound.
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Black holes - Euclidean continuation

In the absence of a well-defined geometry, black holes and black
hole thermodynamics are defined through the Euclidean
continuation.

Gutperle, Kraus (2011) ; Ammon, Gutperle, Kraus, Perlmutter
(2011, 2013)

The Euclidean BTZ black hole has solid torus topology.

Carlip, Teitelboim (1995)
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Black hole topology - Euclidean formulation

The topology of the Euclidean black hole is a solid torus, R2 ×S1. The “Euclidean horizon” r+
is the origin of a system of polar coordinates r,τ in R2. The Euclidean time τ is the polar angle.

On the other hand, the S1 is parametrized by the angle ϕ.
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Black hole in Chern-Simons formulation -
Definition

More precisely :

The (Euclidean) black hole is the most general flat connection
(with Euclidean version of the algebra) on a solid torus with no
singularity, obeying the appropriate boundary conditions at
infinity,

and allowing for a consistent thermodynamics (real entropy).

One can derive the whole thermodynamics and in particular the
below extremality condition (existence of a horizon) within the
Chern-Simons formulation,

without invoking the explicit form of the metric or even metric
concepts (causal structure etc).

This approach is crucial when higher spins are included, where
there is no well-defined geometry.
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there is no well-defined geometry.
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Hypergravity black holes

The hypergravity Euclidean black hole is then a flat
osp(1|4;C)-connection defined on the solid torus,

obeying the above boundary conditions

and regular everywhere, including at the origin r+.

This is the generalization of absence of conical singularity at the
horizon.

Such solutions exist.
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Hypergravity black holes

The Euclidean connection for the black hole is explicitly given by

Aϕ = L1 − 2π

k
L L−1 + π

5k
U U−3 ,

where L and U are now complex constants (related to the
Lorentzian L ± and U ±) (mass, angular momentum and spin-4
charges).

The component Aτ along Euclidean time can be determined from
the equations of motion and the boundary conditions, and
involve two complex functions, ξ and µ (“chemical potentials").

The regularity condition (absence of conical singularity at the
origin) determines ξ and µ in terms of the charges L , U .
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Hypergravity black hole -Thermodynamics

The Euclidean action gives the entropy

and the thermodynamics can be consistently defined

provided the charges are within the “extremal limit"

corresponding to a real entropy.

The expressions are rather cumbersome but the derivation is
direct.

One finds as extremality bounds L ± ≥ 0, k
3πU ± ≤ 24

32

(
L ±)2 and

−(
L ±)2 ≤ k

3π
U ±

This last bound is just the hypersymmetric bound found above
from the algebra.

The black holes that saturate this bound are extremal and
hypersymmetric (possess Killing vector-spinors).
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Conclusions and comments

Hypersymmetry bounds exist, are non trivial and are interesting.

They provide nonlinear constraints on the bosonic charges.

In the case of 2+1 hypergravity, the black holes that saturate the
bounds are extremal.

The whole discussion can be pursued purely algebraically,

without invoking geometrical concepts.

The question remains, however : can one define an invariant
geometry in the presence of higher spin gauge fields ?

Another question is : can we account for all the bounds ?

One should consider more complete models that include
supersymmetry, higher spin hypersymmetry. Perhaps one must
go all the way to an infinite number of spins...
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