The S-Matrix of AdS/CFT

Based on hep-th/0310252,0504190 * ,0511084,to appear. * in collaboration with M. Staudacher

MG11, Niklas Beisert

Introduction

AdS/CFT Conjecture

- $\mathcal{N} = 4$ gauge theory (exactly) dual to IIB superstrings on $AdS_5 \times S^5$.
- Spectra should agree. Would like to test.
- Weak coupling: Planar gauge theory states described by a spin chain.
- Strong coupling: Planar quantum strings described by sigma model.
- Both models appear integrable. Make full use.

Outline

- 1D Particle model from planar string and gauge theory.
- Nature of the Hamiltonian.
- Symmetry: Centrally extended $\mathfrak{su}(2|2)$.
- Construction of S-matrix, Yang-Baxter equation.
- Relation to Shastry's R-matrix for the Hubbard chain.
- S-matrix of AdS/CFT. Abelian phase.

Planar IIB Superstrings on $AdS_5 imes S^5$

IIB superstrings propagate on the curved superspace $AdS_5 \times S^5$

Subspaces

$$S^{5} = \frac{\mathrm{SO}(6)}{\mathrm{SO}(5)} = \frac{\mathrm{SU}(4)}{\mathrm{Sp}(2)}, \quad AdS_{5} = \frac{\widetilde{\mathrm{SO}}(2,4)}{\mathrm{SO}(1,4)} = \frac{\widetilde{\mathrm{SU}}(2,2)}{\mathrm{Sp}(1,1)}, \quad \text{fermi} = \mathbb{R}^{32}$$

Coset space

$$AdS_5 \times S^5 \times \text{fermi} = \frac{\widetilde{\text{PSU}}(2,2|4)}{\text{Sp}(1,1) \times \text{Sp}(2)}$$

The $\mathcal{N}=4$ Spin Chain and $\mathfrak{psu}(2,2|4)$

Basis of spins: All fields of the theory & derivatives

 $\mathcal{W} \in \{\mathcal{D}^n \Phi, \mathcal{D}^n \Psi, \mathcal{D}^n \mathcal{F}\}.$

One irreducible non-compact lowest-weight module V_F of $\mathfrak{psu}(2,2|4)$. Basis of states: Single-trace operators (cyclicity of gauge invariant states)

 $\mathcal{O} = \operatorname{Tr} \mathcal{W}_1 \mathcal{W}_2 \mathcal{W}_3 \dots \mathcal{W}_L = \pm \operatorname{Tr} \mathcal{W}_2 \mathcal{W}_3 \dots \mathcal{W}_L \mathcal{W}_1 = \dots$

Spin chain with non-compact spin representation $\mathbb{V}_{\mathbf{F}}$

Hamiltonian as a Symmetry Generator

The Hamiltonian ...

- ... generates time translations on AdS_5 ,
- ... is an isometry of the string background,
- ... is part of superconformal symmetry,
- is part of the symmetry algebra PSU(2,2|4).

Unusual spin chain model where

- ... the Hamiltonian does not commute with the symmetry generators,
- ... the Hamiltonian is part of the non-abelian symmetry algebra,
- ... energies determine how states transform under symmetry,
- ... energies are labels for multiplets of states,
- ... the multiplet structure is dynamical,
- ... the multiplets have a continuous (energy) label.

Split $\mathfrak{H}(g) = \mathfrak{H}_0 + \delta \mathfrak{H}(g)$: Classical energy \mathfrak{H}_0 and energy shift $\delta \mathfrak{H}(g)$.

Light Cone Gauge and a Particle Model

Perform light cone gauge using time from AdS_5 and great circle from S^5 .

- Vacuum: Point-particle moving along time and great circle.
- Excitations: 4 coordinates on AdS_5 and 4 coordinates on S^5 .

• Fermions: 1/2 are momenta, 1/2 are gauged away, 8 remain.

QM particle model of 8 bosonic and 8 fermionic flavours on the circle.

Residual symmetry

Unbroken symmetries of the vacuum state:

- $\widetilde{SO}(4,2) \simeq \widetilde{SU}(2,2)$ reduces to $SO(4) \simeq SU(2) \times SU(2)$.
- $SO(6) \simeq SU(4)$ reduces to $SO(4) \simeq SU(2) \times SU(2)$.
- $\widetilde{PSU}(2,2|4)$ reduces to $(PSU(2|2) \times PSU(2|2)) \ltimes \mathbb{R}$.

Excitations transform in representations of $(PSU(2|2) \times PSU(2|2)) \ltimes \mathbb{R}$.

Coordinate Space Bethe Ansatz

Consider spin chain states with few "excitations".

Ferromagnetic vacuum of an *infinite* chain: protected state with scalar \mathcal{Z}

 $|0\rangle = |\dots Z Z Z \dots \rangle, \qquad \delta \mathfrak{H} |0\rangle = 0.$

One-excitation states with excitation \mathcal{A} at position a, momentum p

$$|\mathcal{A}(p)\rangle = \sum_{a} e^{ipa} |\dots \mathcal{Z} \dots \overset{a}{\mathcal{A}} \dots \mathcal{Z} \dots \rangle, \qquad \delta \mathfrak{H} |\mathcal{A}(p)\rangle = \delta E_{\mathcal{A}}(p) |\mathcal{A}(p)\rangle.$$

(4+4|4+4) flavours of single excitations $\mathcal{A} \in \{\phi^i, \mathcal{D}^{\mu} \mathcal{Z} | \psi^a, \dot{\psi}^{\dot{a}}\}$. [Berenstein Maldacena] The remaining (infinitely many) spin orientations in module \mathbb{V}_{F}

• are multiple excitations,

• arise when two or more elementary excitations coincide on a single site. Coordinate space Bethe ansatz leads to a particle model with 88 flavours.

Residual Symmetry

1D particle model with particles of 8|8 flavours.

States transform under (30|32) generators of $\mathfrak{psu}(2,2|4)$.

- (8|8) generators create excitations with p=0,
- (8|8) generators annihilate excitations with p = 0,
- (14|16) remaining generators transform the excitations.

Regroup excitations

$$\mathcal{A} \in \begin{cases} \phi^{11} & \phi^{12} & \psi^{11} & \psi^{12} \\ \phi^{21} & \phi^{22} & \psi^{21} & \psi^{22} \\ \hline \dot{\psi}^{11} & \dot{\psi}^{12} & \mathcal{D}^{11} & \mathcal{D}^{12} \\ \dot{\psi}^{21} & \dot{\psi}^{22} & \mathcal{D}^{21} & \mathcal{D}^{22} \end{cases} \end{cases}$$

Residual symmetry $\mathbb{R} \ltimes (\mathfrak{psu}(2|2) \times \mathfrak{psu}(2|2)) \ltimes \mathbb{R}$.

$\mathfrak{su}(2|2)$ Residual Algebra

1D particle model with 2|2 flavours (ϕ^a, ψ^{α}). Inhomogeneous spin chain. Residual algebra $\mathfrak{su}(2|2)$ preserves particle number. Generators:

- $\Re^a{}_b$ internal $\mathfrak{su}(2)$ rotation generator,
- $\mathfrak{L}^{\alpha}{}_{\beta}$ spacetime $\mathfrak{su}(2)$ rotation generator,
- $\mathfrak{Q}^{\alpha}{}_{b}$ supersymmetry generator,
- $\mathfrak{S}^{a}{}_{\beta}$ superboost generator,
- \mathfrak{C} central charge. Particle number and energy: $C = \frac{1}{2}K + \frac{1}{2}\delta E$.

Algebra: $\Re^{a}{}_{b}$, $\mathfrak{L}^{\alpha}{}_{\beta}$ transform indices. Anticommutator of supercharges

$$\begin{split} \{\mathfrak{Q}^{\alpha}{}_{a},\mathfrak{S}^{b}{}_{\beta}\} &= \delta^{b}_{a}\mathfrak{L}^{\alpha}{}_{\beta} + \delta^{\alpha}_{\beta}\mathfrak{R}^{b}{}_{a} + \delta^{b}_{a}\delta^{\alpha}_{\beta}\mathfrak{C}, \\ \{\mathfrak{Q}^{\alpha}{}_{a},\mathfrak{Q}^{\beta}{}_{b}\} &= 0, \\ \{\mathfrak{S}^{\alpha}{}_{a},\mathfrak{S}^{b}{}_{\beta}\} &= 0. \end{split}$$

Excitations should transform in (2|2) representation of $\mathfrak{su}(2|2)$.

Extension to $\mathfrak{su}(2|2)\ltimes\mathbb{R}^2$

Problems:

- Central charge acts as energy: $C = \frac{1}{2}K + \frac{1}{2}\delta E$ with δE continuous.
- The only (2|2)-dimensional representations are the fundamentals.
- The fundamental representations have $C = \pm \frac{1}{2}$.
- The asymptotic states have discrete *C*: No anomalous dimensions? Resolution:
- Enlarge algebra by two central charges $\mathfrak{P}, \mathfrak{K}: \mathfrak{su}(2|2) \ltimes \mathbb{R}^2$ [NB [hep-th/0511082]

$$\{\mathfrak{Q}^{\alpha}{}_{a},\mathfrak{Q}^{\beta}{}_{b}\}=\varepsilon^{\alpha\beta}\varepsilon_{ab}\mathfrak{P},\qquad \{\mathfrak{S}^{a}{}_{\alpha},\mathfrak{S}^{b}{}_{\beta}\}=\varepsilon^{ab}\varepsilon_{\alpha\beta}\mathfrak{K}.$$

• Closure of algebra for the $(\mathbf{2}|\mathbf{2})$ representation requires

 $\vec{C}^2 = C^2 - PK = \frac{1}{4}.$

• Family of (2|2) representations with continuous C (mass shell).

Fundamental Representation of $\mathfrak{su}(2|2) \ltimes \mathbb{R}^2$

Ansatz for (2|2) representation with canonical action of $\mathfrak{R}^{a}{}_{b}, \mathfrak{L}^{\alpha}{}_{\beta}$:

$$\begin{split} \mathfrak{Q}^{\alpha}{}_{a}|\phi^{b}\rangle &= a\,\delta^{b}_{a}|\psi^{\alpha}\rangle,\\ \mathfrak{Q}^{\alpha}{}_{a}|\psi^{\beta}\rangle &= b\,\varepsilon^{\alpha\beta}\varepsilon_{ab}|\phi^{b}\mathcal{Z}^{+}\rangle,\\ \mathfrak{S}^{a}{}_{\alpha}|\phi^{b}\rangle &= c\,\varepsilon^{ab}\varepsilon_{\alpha\beta}|\psi^{\beta}\mathcal{Z}^{-}\rangle,\\ \mathfrak{S}^{a}{}_{\alpha}|\psi^{\beta}\rangle &= d\,\delta^{\beta}_{\alpha}|\phi^{a}\rangle,\\ \mathfrak{C}|\mathcal{X}\rangle &= C|\mathcal{X}\rangle,\\ \mathfrak{P}|\mathcal{X}\rangle &= C|\mathcal{X}\rangle,\\ \mathfrak{P}|\mathcal{X}\rangle &= F|\mathcal{X}\mathcal{Z}^{+}\rangle,\\ \mathfrak{K}|\mathcal{X}\rangle &= K|\mathcal{X}\mathcal{Z}^{-}\rangle. \end{split}$$

Closure requires ad - bc = 1, $C = \frac{1}{2}(ad + bc)$, P = ab, K = cd.

Denote this multiplet by $\langle \vec{C} \rangle = \langle C, P, K \rangle$.

Reduction to $\mathfrak{su}(2|2)$ for Composite States

To recover $\mathfrak{su}(2|2)$ we need $\mathfrak{P}, \mathfrak{K}$ to annihilate physical states. Idea: Identify them with gauge transformations $\delta \mathcal{W} = [\epsilon, \mathcal{W}]$. For \mathfrak{P} use gauge parameter $\epsilon = g\alpha \mathcal{Z}$.

- Vacuum spin \mathcal{Z} trivially invariant: $\mathfrak{P}|0\rangle = 0$.
- Particle transforms as $\mathfrak{P}|\mathcal{X}\rangle = g\alpha |[\mathcal{Z}^+, \mathcal{X}]\rangle = g\alpha |\mathcal{Z}^+\mathcal{X}\rangle g\alpha |\mathcal{X}\mathcal{Z}^+\rangle.$

Symbols \mathcal{Z}^{\pm} mean insertion/removal of vacuum site \mathcal{Z} . Implies

$$|\mathcal{Z}^{\pm}\mathcal{X}\rangle = e^{\mp ip} |\mathcal{X}\mathcal{Z}^{\pm}\rangle.$$

Likewise, $\Re |\mathcal{X}\rangle = g\alpha^{-1} |[\mathcal{Z}^-, \mathcal{X}]\rangle$ to remove vacuum site. Action of $\mathfrak{P}, \mathfrak{K}$:

$$\begin{aligned} \mathfrak{P} |\mathcal{X}\rangle &= P |\mathcal{Z}^+ \mathcal{X}\rangle, \\ \mathfrak{K} |\mathcal{K}\rangle &= K |\mathcal{Z}^- \mathcal{X}\rangle \end{aligned} \quad \text{with} \quad \begin{aligned} P &= g\alpha \quad (1 - e^{+ip}), \\ K &= g\alpha^{-1}(1 - e^{-ip}). \end{aligned}$$

Cyclicity condition P = K = 0 for physical states with zero momentum.

Solution for the Representation

Momentum constraint and energy eigenvalue C (central charge)

$$\prod_{k=1}^{K} e^{ip_k} = 1, \qquad C = \sum_{k=1}^{K} C_k, \quad C_k = \pm \frac{1}{2}\sqrt{1 + 16g^2 \sin^2(\frac{1}{2}p_k)}.$$

Introduce spectral parameters x_k^{\pm} with

$$x_k^+ + \frac{1}{x_k^+} - x_k^- - \frac{1}{x_k^-} = \frac{i}{g}.$$

Then momentum and energy of an excitation read

$$e^{ip_k} = \frac{x_k^+}{x_k^-}, \qquad C_k = \frac{1}{2} + \frac{ig}{x_k^+} - \frac{ig}{x_k^-} = -igx_k^+ + igx_k^- - \frac{1}{2}.$$

S-Matrix as an Invariant Operator

S-matrix is a two-particle permutation operator

 $\mathcal{S}_{kl}|\ldots\mathcal{X}_k\mathcal{X}_l'\ldots\rangle\mapsto *|\ldots\mathcal{X}_l''\mathcal{X}_k'''\ldots\rangle.$

invariant under $\mathfrak{su}(2|2) \ltimes \mathbb{R}^2$: $[\mathfrak{J}_k + \mathfrak{J}_l, \mathcal{S}_{kl}] = 0$. From manifest $\mathfrak{su}(2) \times \mathfrak{su}(2)$ symmetries

$$\begin{split} \mathcal{S}_{12} |\phi_{1}^{a}\phi_{2}^{b}\rangle &= A_{12} |\phi_{2}^{\{a}\phi_{1}^{b\}}\rangle + B_{12} |\phi_{2}^{[a}\phi_{1}^{b]}\rangle + \frac{1}{2}C_{12}\varepsilon^{ab}\varepsilon_{\alpha\beta} |\psi_{2}^{\alpha}\psi_{1}^{\beta}\mathcal{Z}^{-}\rangle, \\ \mathcal{S}_{12} |\psi_{1}^{\alpha}\psi_{2}^{\beta}\rangle &= D_{12} |\psi_{2}^{\{\alpha}\psi_{1}^{\beta\}}\rangle + E_{12} |\psi_{2}^{[\alpha}\psi_{1}^{\beta]}\rangle + \frac{1}{2}F_{12}\varepsilon^{\alpha\beta}\varepsilon_{ab} |\phi_{2}^{a}\phi_{1}^{b}\mathcal{Z}^{+}\rangle, \\ \mathcal{S}_{12} |\phi_{1}^{a}\psi_{2}^{\beta}\rangle &= G_{12} |\psi_{2}^{\beta}\phi_{1}^{a}\rangle + H_{12} |\phi_{2}^{a}\psi_{1}^{\beta}\rangle, \\ \mathcal{S}_{12} |\psi_{1}^{\alpha}\phi_{2}^{b}\rangle &= K_{12} |\psi_{2}^{\alpha}\phi_{1}^{b}\rangle + L_{12} |\phi_{2}^{b}\psi_{1}^{\alpha}\rangle. \end{split}$$

with ten coefficient functions A_{12}, \ldots, L_{12} and $A_{12} = A(p_1, p_2), \ldots$

Coefficients

Commutators with fermionic generators relate all coefficients: [NB hep-th/0511082]

 $A_{12} = S_{12}^0 rac{x_2^+ - x_1^-}{x_2^- - x_1^+},$ $G_{12} = S_{12}^0 rac{1}{arepsilon_1} rac{x_2^+ - x_1^+}{x_2^- - x_1^+}\,,$ $B_{12} = S_{12}^0 \frac{x_2^+ - x_1^-}{x_2^- - x_1^+} \quad 1 - 2 \frac{1 - 1/x_2^- x_1^+}{1 - 1/x_2^- x_1^-} \frac{x_2^+ - x_1^+}{x_2^+ - x_1^-} \right),$ $H_{12}=S_{12}^0\,rac{\xi_2\gamma_1}{arepsilon_1\gamma_2}rac{x_2^+-x_2^-}{x_2^--x_2^+}\,,$ $C_{12} = S_{12}^0 rac{2 \xi_2 \gamma_2 \gamma_1}{lpha x_2^- x_1^-} rac{1}{1 - 1/x_2^- x_1^-} rac{x_2^+ - x_1^+}{x_2^- - x_1^+} \,,$ $K_{12} = S_{12}^0 rac{\gamma_2}{\gamma_1} rac{x_1^+ - x_1^-}{x^- - x^+} \,,$ $E_{12} = -S_{12}^{0} \frac{\xi_2}{\xi_1} \quad 1 - 2 \frac{1 - 1/x_2^+ x_1^-}{1 - 1/x_2^+ x_1^+} \frac{x_2^- - x_1^-}{x_2^- - x_1^+} \right),$ $F_{12} = -S_{12}^{0} \frac{2\alpha (x_{2}^{+} - x_{2}^{-})(x_{1}^{+} - x_{1}^{-})}{\xi_{1}\gamma_{2}\gamma_{1}x_{2}^{+}x_{1}^{+}} \frac{1}{1 - 1/x_{2}^{+}x_{1}^{+}} \frac{x_{2}^{-} - x_{1}^{-}}{x_{2}^{-} - x_{1}^{+}},$ $L_{12} = S_{12}^0 \,\xi_2 \, \frac{x_2 - x_1}{x_2^- - x_1^+} \,,$ $D_{12} = -S_{12}^0 \frac{\xi_2}{\epsilon_1} \,.$

Spectral parameters $x_k^{\pm} = x^{\pm}(p_k)$ functions of particle momenta p_k .

- Overall factor $S_{12}^0 = S^0(p_1, p_2)$ cannot be determined by symmetry.
- S-matrix not of difference form $S(p_1, p_2) \neq S(f(p_1) f(p_2))$.

Uniqueness and Representations

Why is the S-matrix uniquely determined by symmetry alone? Consider the tensor product of two fundamentals

 $\langle \vec{C} \rangle \otimes \langle \vec{C}' \rangle = \{0,0; \vec{C} + \vec{C}' \}.$

The one resulting representations is irreducible!

- Fundamental representation $\langle \vec{C} \rangle$ is short/atypical: 4 components. $\{0, 0; \vec{C}\}$ is long/typical (unless $\vec{C}^2 = 1$): 16 components. $4 \times 4 = 16$.
- Shortening condition for $\{m, n; \vec{C}\}$ is quadratic $\vec{C}^2 = \frac{1}{4}(n + m + 2)^2$. Generally not met because $(\vec{C} + \vec{C'})^2 = \frac{1}{2} + 2\vec{C} \cdot \vec{C'} \neq 1$.
- Very unusual to obtain only one irrep in tensor product.

NB to appear

Unitarity

Does the S-matrix satisfy the unitarity condition $S_{21}S_{12} = 1$?

It maps between identical spaces

$$\mathcal{S}_{21}\mathcal{S}_{12}:\langleec{C}_1
angle \otimes \langleec{C}_2
angle o \langleec{C}_1
angle \otimes \langleec{C}_2
angle.$$

But $\langle \vec{C}_1 \rangle \otimes \langle \vec{C}_2 \rangle = \{0, 0; \vec{C}_1 + \vec{C}_2\}$ is irreducible, so $S_{21}S_{12} \sim \mathcal{I}!$ Show $S_{21}S_{12} = \mathcal{I}$ for one component $|\psi^1\psi^1\rangle$: S_{12} acts as factor D_{12} . Overall factor: $D_{12}D_{21} = S_{12}^0S_{21}^0$. Unitarity requires $S_{12}^0S_{21}^0 \stackrel{!}{=} 1$.

Yang-Baxter Relation

Does it satisfy the Yang-Baxter equation $S_{12}S_{13}S_{23} = S_{23}S_{13}S_{12}$?

Consider the tensor product

$$\langle \vec{C}_1 \rangle \otimes \langle \vec{C}_2 \rangle \otimes \langle \vec{C}_3 \rangle = \{0, 1; \vec{C}_1 + \vec{C}_2 + \vec{C}_3\} \oplus \{1, 0; \vec{C}_1 + \vec{C}_2 + \vec{C}_3\}.$$

Then show $S_{21}S_{31}S_{32}S_{12}S_{13}S_{23} = \mathcal{I}$ for one representative state in each multiplet to prove YBE: $|\phi^1\phi^1\phi^1\rangle$ and $|\psi^1\psi^1\psi^1\rangle$. No mixing here! S-matrix S_{12} acts as factor A_{12} and D_{12} , respectively. Trivially satisfied.

Nested Bethe Ansatz

To describe a state we started with

• a homogeneous spin chain infinitely many spin orientations

 $|\ldots \mathcal{Z}\mathcal{Z}\phi^a\mathcal{Z}\mathcal{Z}\mathcal{Z}\phi^b\mathcal{Z}\mathcal{Z}\mathcal{Z}\ldots\mathcal{Z}\psi^c\mathcal{Z}\mathcal{Z}\ldots\rangle^0.$

We can now describe a state by

- a set of K momenta p_k ,
- an inhomogeneous spin chain with (2|2) spin orientations

 $|\phi_1^a\phi_2^b\psi_3^c\rangle^{\mathrm{I}}.$

We should repeat this procedure to trade more orientations for momenta.

In the end, we would like to describe a state by continuous numbers only

- a set of K parameters p_k (expressed through x_k^{\pm}),
- a set of N parameters y_k ,
- a set of M parameters w_k .

Achieved by nested Bethe ansatz.

Diagonalised Scattering

Components of the diagonalised S-matrix

NB hep-th/0511082

$$\begin{split} S_{12}^{\mathrm{I},0} &= \frac{x_1^+}{x_1^-} \,, \qquad S_{12}^{\mathrm{II},\mathrm{II}} = \xi_2 \, \frac{y_1 - x_2^-}{y_1 - x_2^+} \,, \quad S_{12}^{\mathrm{III},\mathrm{II}} = \frac{w_1 - y_2 - 1/y_2 - \frac{i}{2}g^{-1}}{w_1 - y_2 - 1/y_2 + \frac{i}{2}g^{-1}} \,, \\ S_{12}^{\mathrm{I},\mathrm{I}} &= S_{12}^0 \, \frac{x_1^- - x_2^+}{x_1^+ - x_2^-} \,, \quad S_{12}^{\mathrm{II},\mathrm{II}} = 1 \,, \qquad S_{12}^{\mathrm{III},\mathrm{III}} = \frac{w_1 - w_2 + ig^{-1}}{w_1 - w_2 - ig^{-1}} \,. \end{split}$$

Periodicity condition: Bethe equation

Hubbard Chain

- Spin chain model of 2 bosonic and 2 fermionic spin orientations.
- It has $\mathfrak{su}(2) \times \mathfrak{su}(2)$ symmetry (for odd length only $\mathfrak{su}(2)$).
- It has a coupling constant U.
- It does not fit into scheme of conventional integrable spin chains.
- Shastry's R-matrix for this model is not of difference form.

Is there a relationship? Compare to Lieb-Wu equations: [

$$1 = \prod_{j=1}^{K} \frac{1}{\xi_j} \frac{y_k - x_j^+}{y_k - x_j^-} \prod_{j=1}^{M} \frac{y_k + 1/y_k - w_j + \frac{i}{2}g^{-1}}{y_k + 1/y_k - w_j - \frac{i}{2}g^{-1}}, \qquad 1 = \exp(-ik_k K) \prod_{j=1}^{M} \frac{2\sin k_k - 2\Lambda_j + \frac{i}{2}U}{2\sin k_k - 2\Lambda_j - \frac{i}{2}U}, \\ 1 = \prod_{j=1}^{N} \frac{w_k - y_j - 1/y_j + \frac{i}{2}g^{-1}}{w_k - y_j - 1/y_j - \frac{i}{2}g^{-1}} \prod_{\substack{j=1\\ j \neq k}}^{M} \frac{w_k - w_j - ig^{-1}}{w_k - w_j + ig^{-1}}, \qquad 1 = \prod_{j=1}^{N} \frac{2\Lambda_k - \sin k_j + \frac{i}{2}U}{2\Lambda_k - \sin k_j - \frac{i}{2}U} \prod_{\substack{j=1\\ j \neq k}}^{M} \frac{2\Lambda_k - 2\Lambda_j - iU}{2\Lambda_k - 2\Lambda_j + iU}.$$

Need to identify

$$g^{-1} = U,$$
 $w_k = 2\Lambda_k,$ $y_k = -i\exp(ik_k).$

Furthermore, $x_k^+ = i\xi_k$, $x_k^- = -i/\xi_k$ and take the limit $\xi_k \to \infty$.

Shastry's R-matrix

Form of present S-matrix similar to Shastry's R-matrix.[PRL 56,2453]Compare coeffs A, \ldots, L to $\alpha_{1,\ldots,10}$ from Ramos-Martins.[Ramos, Martins]Adjusting the parameters $x_k^{\pm}, \xi_k, \gamma_k$ to a_k, b_k, h_k appropriately, we find

R-matrix is equivalent to present S-matrix (up to twist)!

- R-Matrix has hidden $\mathfrak{su}(2|2) \ltimes \mathbb{R}^2$ supersymmetry.
- Supersymmetry broken in Hubbard chain by choice of x_k^{\pm}, ξ_k .
- Hubbard chain related to exceptional Lie superalgebra $\mathfrak{d}(2|1;\alpha)$.
- AdS/CFT scattering related to R-matrix of Hubbard chain.
- Different from earlier relation by Rej-Serban-Staudacher.

Rej, Serban Staudacher

The S-Matrix for AdS/CFT

Generalise to full symmetry $\mathfrak{psu}(2,2|4)$ of AdS/CFT. Particles transform as $(\mathbf{2}|\mathbf{2}) \otimes (\mathbf{2}|\mathbf{2})'$ under $(\mathfrak{psu}(2|2) \times \mathfrak{psu}(2|2)') \ltimes \mathbb{R}^3$

 $\langle ec{C}
angle \otimes \langle ec{C}
angle'.$

Scattering of multiplets factorises. Complete S-matrix is a product

$$\mathcal{S}_{12}^{\mathrm{AdS/CFT}} = \mathcal{S}_{12} \mathcal{S}_{12}'.$$

Diagonalised excitations: Five types $w'_k, y'_k, p_k, y_k, w_k$.

Momenta p_k shared between $\mathfrak{psu}(2|2)$'s.

MG11, Niklas Beisert

Abelian Phase

The phase $S^0(p_k, p_j)$ is unconstrained. Perturbatively (?)

$$(S_{kj}^{0})^{2} = \frac{1 - 1/x_{k}^{-}x_{j}^{+}}{1 - 1/x_{k}^{+}x_{j}^{-}}\frac{x_{k}^{+} - x_{j}^{-}}{x_{k}^{-} - x_{j}^{+}}\exp\left(-2i\theta_{kj}\right),$$

$$\theta_{kj} = \sum_{r=2}^{\infty}\sum_{s=r+1}^{\infty}\beta_{rs}(g^{2})\left(q_{r,k}q_{s,j} - q_{s,k}q_{r,j}\right),$$

$$q_{r,k} = \frac{1}{r-1}\left(\frac{i}{(x_{k}^{+})^{r-1}} - \frac{i}{(x_{k}^{-})^{r-1}}\right).$$

- Proposal for gauge theory: $\beta_{rs} = 0$ from Feynman diagrams. $\begin{bmatrix} NB, Dippel \\ Staudacher \end{bmatrix}$ Confirmed at three loops. Exact?! $\begin{bmatrix} NB \\ hep-th/0310252 \end{bmatrix} \begin{bmatrix} NB, Staudacher \\ hep-th/0504190 \end{bmatrix} \begin{bmatrix} Rej, Serban \\ Staudacher \end{bmatrix} \begin{bmatrix} Eden \\ Staudacher \end{bmatrix}$ Works in non-compact sectors. $\begin{bmatrix} Moch \\ Vermaseren \\ Vogt \end{bmatrix} \begin{bmatrix} Kotikov, Lipatov \\ Onishchenko \\ Velizhanin \end{bmatrix} \begin{bmatrix} Staudacher \\ Dixon \\ Smirnov \end{bmatrix}$
- Proposal for string theory: $\beta_{rs} = g \delta_{r+1,s} + \mathcal{O}(g^0)$. $\begin{bmatrix} Arutyunov \\ Frolov \\ Staudacher \end{bmatrix}$ Corrections for sigma model loops needed. $\begin{bmatrix} NB, Tseytlin \\ hep-th/0509084 \end{bmatrix} \begin{bmatrix} Hernández \\ López \end{bmatrix} \begin{bmatrix} Freyhult \\ Kristjansen \end{bmatrix}$

Conclusions

- ***** Planar AdS/CFT Correspondence
- Exciting spin chain model from $\mathcal{N} = 4$ gauge theory.
- Strings theory & coordinate space Bethe ansatz for gauge theory: Particle model with $(2|2) \times (2|2)$ particle flavours.
- Residual symmetry is two copies of $\mathfrak{su}(2|2)$ with central extensions.
- Unique S-matrix constructed. YBE automatically satisfied.

*** Hubbard Chain**

- BE contain Lieb-Wu equations. S-Matrix contains Shastry's R-matrix.
- R-matrix supersymmetric. Scattering in AdS/CFT like Hubbard chain.

*** Open Questions**

- Prove integrability for gauge and string theory.
- Find abelian phase S_{12}^0 consistent with crossing symmetry.
- Understand better & generalise $\mathfrak{su}(2|2) \ltimes \mathbb{R}^2$ chain.