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Introduction and motivation

I’ve spent a lot of time studying Wilson loop operators. Those are

very interesting Gauge invariant non-local operators in non-Abelian

gauge theories.

W [C] = Tr P exp

[

i

∮

C

Aµ dx
µ

]

.

Can be used to characterize the phases of the theory. For two

parallel lines of seperation R and length T → ∞, we get

lim
T→∞

〈W 〉 = e−T V (R) .

V (R) is the potential between two probe charges and depends on

the phase.
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Main examples

Phase V (R)

Coulomb 1/R Conformal

Free electric 1/R log(ΛR) Massless electric charges

Free magnetic log(ΛR)/R Massless magnetic charges

Higgs constant Electric charges condense

Confining σR Magnetic charges condense

In the case of N = 4 there is no question of phase, it’s conformal.

Still those are extremely interesting observables in gauge theories

and should be studied here too.

One approach is to expand them in terms of local operators. This

is an infinite expansion that for most purposes is not very useful.

Want better ways to study those operators.
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Outline

• Introduction and motivation

• Maldacena-Wilson loops in N = 4 SYM.

• 1/2 BPS loops:

– Line, circle.

– Gauge theory and the matrix model.

– AdS5 × S5, strings, D3s and D5s.

• 1/4 BPS loops:

– Zarembo’s construction.

– Hybrid circle: Matrix model, unstable saddle point...

• More general loops:

– Integrability in AdS.

– Nearly circular loops and spin-chains.

• Discussion
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Maldacena-Wilson loops

In N = 4 it’s very natural to consider the operators

W =
1

N
TrP exp

[
∫

(

Aµ(x(t))ẋ
µ(t) + i|ẋ(t)|ΘI(t)ΦI(x(t))

)

dt

]

,

where xµ(t) is an arbitrary path, ΦI are the six scalars and ΘI(t)

arbitrary scalar couplings. If ΘI have norm one this operator is

locally supersymmetric and for a smooth curve seems to be finite.

It’s possible to include also couplings to the Fermi fields.

In AdS the Wilson loop is normally described by a macroscopic

string extending to the boundary. The expectation value of the

Wilson loop is the partition function of the string satisfying

boundary conditions given by xµ (Dirichlet) and by ΘI (Neumann),

which is usually approximated by a classical saddle point.

〈W 〉 =

∫

DX e−S[X] ∼ e−S[Xclassical] .
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1/2 BPS loops

Line

In special cases the local supersymmetry is preserved globally. The

simplest example is the straight line coupled to a single scalar

W =
1

N
TrP exp

[

i

∫

(At(t) + Φ6(t)) dt

]

,

This is annihilated by a linear combination of Q and Q̄ and

preserves half the supercharges. The symmetry of the loop is the

supergroup OSp(4⋆|4) subgroup of the PSU(2, 2|4) symmetry of

the vacuum. Its even subgroup is SL(2,R) × SO(3) × SO(5)

SL(2,R) includes time translations, dilation and a conformal

transformation. SO(3) are rotations around the line and SO(5) is

the unbroken R-symmetry.
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Circle

By a conformal transformation we can map the line to the circle

W =
1

N
TrP exp

[

i

∫

(Aψ(ψ) + iRΦ6(ψ)) dψ

]

,

where R is its radius and ψ is an angular coordinate in the plane.

This also preserves half the supersymmetries, but a different

combination, now involving also S and S̄.

It’s slightly harder to see how OSp(4∗|4) (or its even subgroup)

acts, but this is clearly still the symmetry of the operator. We will

come back to this symmetry later when studying arbitrary

non-supersymmetric loops, which we write as deformations of the

line/circle and are best classified by representations of this

supergroup.
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Gauge theory and the matrix model

The line seems to have a trivial expectation value, but the circle is

more interesting. Expanding to second order

〈W 〉 = 1 − 1

2N
Tr

∫

dψ1 dψ2

[

〈Aψ(ψ1)Aψ(ψ2)〉 −R2〈Φ6(ψ1)Φ6(ψ2)〉
]

The scalar propagator is a constant divided by the distance,

4 sin2 ψ2−ψ1

2 . The gauge field propagator (in the Feynman gauge is

the same, times the product of the two tangent vectors

cos(ψ2 − ψ1). Together one finds the combination

cos(ψ2 − ψ1) − 1

4 sin2 ψ2−ψ1

2

= −1

2
.

This is multiplied by g2N2/16π2 and integrated over the two

angles.

At two loop order the interacting graphs vanish and assuming that

this continues to higher loop orders, the full result for the circle is
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given by the sum over free propagators. Since the combination of

gauge field and scalar propagators has no spatial dependence, and

can therefore be summarized by a 0-d Hermitean matrix model

〈W 〉 =

〈

1

N
Tr eM

〉

M.M.

=
1

Z

∫

dM
1

N
Tr eM e

− 2

g2
TrM2

.

At the planar limit this is given by the Wigner distribution

〈W 〉 =
2

πλ

∫

√
λ

−
√
λ

dx
√

λ− x2 ex =
2√
λ
I1

(√
λ
)

∼
√

2√
πλ3/4

e
√
λ .

The matrix model may be calculated exactly, including non-planar

contributions. For example if one considers a loop wrapped k times

with k ∼ N the matrix model gives (another expression was

calculated for loop in the k’th antisymmetric representation).

〈Wk〉 ∼ e2N(κ
√

1+κ2+arcsinhκ) , κ =
k
√
λ

4N
.

Those expressions will be reproduced from string theory below.
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String in AdS5

With the AdS5 metric

ds2 =
1

y2
(dy2 + d~x2) ,

the solution describing the line is given by the surface spanned by y

and x0 = t. The bulk action is

Sbulk =

√
λ

2π

∫

dy dt
1

y2
,

which diverges. But there is a boundary term ensuring that the

boundary conditions on y and the sphere directions are Neumann.

This is

Sbndry =

∫

dtpy , py =
δS

δ∂σy
.

The combined action vanishes.
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For the circle the resulting surface satisfies the relation

y2 + r2 = y2 + x2
1 + x2

2 = R2, a constant. The bulk action is

Sbulk =
λ

2π

∫

dr r dψ

√

1 + y′2

y2
, y′ =

dy

dr
= − r

y
.

The integral is

Sbulk =
√
λ

∫ R

0

dr r

√

1 + y′2

y2
=

√
λ

∫ R

0

dr
rR

(R2 − r2)3/2

=
√
λ

(

−1 +
R

y0

)

,

with a cutoff y0. The Legendre transform removes this term leaving

us with the result that matches the large λ expression from the

matrix model

〈W 〉 ∼ e
√
λ .
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D3 and D5 branes

For a multiply wound Wilson loop the AdS description would

involve a large number of coincident fundamental strings. This may

lead to a Myers effect, where the strings blow up to a D-brane. For

a Wilson loop in the antisymmetric representation of dimension

k ∝ N the appropriate description is in terms of a D5-brane along

the same AdS2 subspace of AdS5 and wrapping an S4 ⊂ S5.

A multiply wrapped loop seems to be given by a D3-brane

wrapping an AdS2 × S2 entirely inside AdS5. In both cases those

branes will carry k units of electric flux, representing the

fundamental string charge. The radius of the S4 or of the S2 will

be fixed by the ratio k/N .
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Calculating the action is quite a subtle affair. There are again

divergences and one has to worry about defining the correct

boundary problem. Like before one has to Legendre transform from

y to the conjugate momentum py. Then it’s also necessary to

replace the gauge field with the conjugate πA.
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After that, the resulting action is finite and in both cases is a

function of k and N . For the antisymmetric representation

〈Wasym〉 = e
√
λ 2N

3π sin3 θk .

For the multiply wrapped Wilson loop

〈Wk-wrapped〉 = e2N(κ
√

1+κ2+arcsinhκ) ∼ ek
√
λ+λ3/2k3

96N2 .

The same answer is found for the related matrix model observables.

An interesting fact is that at large λ the matrix model gives the

same result for the multiply wrapped loop and the symmetric

representation, so both may be described by the D3-brane.
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1/4 BPS loops

To see the supersymmetry of the straight line it’s convenient to use

the notations of SYM in ten dimensions, then the variation of

At + Φ6 is (Γt + Γ6)Ψ and this combination of gamma matrices has

half its eigenvalues zero.

It was then noticed that it is possible to construct 1/4 BPS, 1/8

BPS and 1/16 BPS loops for arbitrary curves in a 2-plane, 3-plane

or in all of R
4. In the planar case one has to associate to each

direction in the plane a scalar and if the tangent vector to the

curve is a1x̂
1 + a2x̂

2, it should be coupled to the scalar

a1Φ1 + a2Φ2. Then the Wilson loop will be invariant under the

overlap of the supersymmetries of the line withA1 + iΦ1 and the

line with A2 + iΦ2.

All those loops seem to have trivial expectation values and recently

the surfaces in AdS5 × S5 associated with them were studied.

N. Drukker, Comments on Wilson loops 15 Integrability workshop, Golm
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“Hybrid” loop

These loops are quite interesting, particularly the fact that they

are so many of them. But there are many more supersymmetric

loops. First, like in the case of the 1/2 BPS circle, if the loops are

confined to a sphere rather than a plane they can be made

invariant under other supersymmetries, but expectation value does

not need to be trivial (this has not been studied, as far as I know).

Another case found recently is a mixture between the 1/2 and 1/4

BPS circles. Consider the Wilson loop with combination

iR [A1 cos τ +A2 sin τ + i (sin θ0(Φ1 cos τ + Φ2 sin τ) + cos θ0Φ3)] .

For θ0 = 0 it couples only to Φ3, (1/2 BPS) while for θ0 = π/2 it

couples periodically to the two other scalars (1/4). In a few lines

it’s possible to show that for all θ0 6= 0 this is invariant under a

combination of a quarter of the Q, Q̄, S, and S̄ SUSYs.
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At one loop the periodic scalars proportional to sin2 θ0 will cancel

part of the gauge contribution, leaving the third scalar and gauge

field terms both proportional to cos2 θ0. Thus all ladder diagrams

are constants, like the 1/2 BPS circle with λ→ λ′ = λ cos2 θ0.

At two loop order the interacting graphs cancel again, so we may

guess that these loops with arbitrary θ0 are given by ladder

diagrams to all orders. The result will be the same matrix model as

before with the above replacement in the coupling.

In AdS5 × S5 the boundary conditions on the string map it to a

circle on the boundary wrapping a parallel at angle θ0 from the

north-pole in an S2 ⊂ S5.

N. Drukker, Comments on Wilson loops 17 Integrability workshop, Golm
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The solution has the AdS5 part with action SAdS = −
√
λ. The

sphere contributes the area the surface contracting the surface over

the pole, SS =
√
λ(1 − cos θ0). Together this is S = −

√
λ cos θ0.

This is exactly the same as the replacement λ→ λ′ = λ cos2 θ0

discussed before!

But we were not too careful, since there are in fact there are two

ways to contract the circle. One over the north pole and the other

over the south pole, the second solution has cos θ → − cos θ, so the

two saddle points contribute

S = ±
√
λ′ ,

and the one with positive action is unstable (it can “slip” off the

sphere in the three other directions of S5).

N. Drukker, Comments on Wilson loops 18 Integrability workshop, Golm
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Recall the planar result of the matrix model it was (after the

modification)

〈W 〉M.M. =
2√
λ′
I1

(√
λ′

)

.

The asymptotic expansion of the Bessel function at large argument

includes the saddle point written before with e
√
λ′

, but also another

saddle point with e−
√
λ′

〈W 〉 ∼
√

2√
πλ′3/4

e
√
λ
′

(1 +O(1/
√
λ′)) − i

√
2√

πλ′3/4
e−

√
λ
′

(1 +O(1/
√
λ′)) .

This agrees with the two solutions found from string theory! The

subleading term is imaginary, which is expected for an unstable

saddle point with an odd number of tachyonic directions.

This is a very interesting system where there is an unstable string

solution the preserves supersymmetry and may other peculiar

properties...
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Furthermore we can consider a BMN-like limit where λ is large but

λ′ is small. This is a loop that is only slightly removed from the

equator where cos θ0 = 0. At the equator itself the system has three

zero modes parameterizing an S3 with measure

dΩ3 =
1

2π2
dα sin2 αdΩ2 ,

where α is in [0, π] and dΩ2 is the measure on S2. Turning on a

small λ′ leads to a potential cosα cos θ0
√
λ while preserving the

symmetry of the S2, so the integration over the broken zero modes

gives for the Wilson loop

〈W 〉 =
2

π

∫ π

0

dα sin2 α e− cosα
√
λ′

=
2√
λ′
I1

(√
λ′

)

.

So doing the path integral only over the broken zero modes gives

the full planar result!

N. Drukker, Comments on Wilson loops 20 Integrability workshop, Golm
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More general loops

So far I talked about a very restricted class of supersymmetric

Wilson loops, but we want to be able to describe arbitrary loops.

Here I describe some steps in this direction.

Integrability in AdS

As mentioned before, the expectation values of Wilson loops at

strong coupling are given by the action of minimal surfaces in

AdS5 × S5. That is, one has to solve the classical equations of

motion for a string in this background with prescribed boundary

conditions.

The σ-model on AdS5 × S5 is classically integrable, which allows in

principle to solve this problem. Indeed we did this for a wide class

of Wilson loops that have periodic couplings. That includes lines,

circles, helices with different scalar couplings. If one takes a

symmetric ansatz for the embedding, the system reduces to a

one-dimensional integrable system.

N. Drukker, Comments on Wilson loops 21 Integrability workshop, Golm
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From studying different examples there is generally a very

complicated phase structure of solutions, where for certain range of

parameters some solutions exist and for others not. Then the

different saddle points dominate in different regimes, meaning that

while doable in principle, in practice the calculations are very hard.

Then if we try to study an arbitrary Wilson loop at weak coupling

we were not able to find similar simplifying structure. Usually the

integrability in the gauge theory side is given by some form of

spin-chain that that doesn’t show up from studying arbitrary

periodic Wilson loops. The exception are the 1/4 BPS loops

presented before.

N. Drukker, Comments on Wilson loops 22 Integrability workshop, Golm
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Nearly circular Wilson loops

So instead of studying Wilson loops with arbitrary shapes, let us

look at loops that are nearly circular (or straight). The reason is

that the starting point is a symmetric object, and then we can

study the deformed one in terms of representations of the broken

symmetry group.

The circle has an OSp(4∗|4) symmetry which includes a

non-compact SL(2,R). The representations of this group are

labeled by a continuous parameter allowing it to get perturbative

corrections, hence it may be an interesting quantity to calculate.

N. Drukker, Comments on Wilson loops 23 Integrability workshop, Golm
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A loop that is close to the circle may be written as a circle with

insertions into it, like

W [Op(ψp) · · ·O1(ψ1)] =
1

N
TrP

[

Op(ψp) · · ·O1(ψ1) e
i

R

(Aψ+iRΦ6)dψ
]

.

where Op are local operators in the anjoint of the gauge group.

Simple examples of such insertions are

(Φ1 + iΦ2)
J , Φ1DµΦ2 , Fµν , F 2 , · · ·

N. Drukker, Comments on Wilson loops 24 Integrability workshop, Golm
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Because the symmetric loop preserves SL(2,R), this may be

thought of as the correlator of those adjoint operators and it will

satisfy all the axioms of a conformal field theories. We can regard

the Wilson loop with p adjoint insertions as a definition of the

p-point function of adjoint operators. The 2-point function will be

related to the conformal dimension of the operators. Then it is

possible to separate the operators into primaries, those annihilated

by Kt, and descendants.

One can go further and study the 3-point function, which will give

the structure constants of this conformal field theory. Then the

4-point function and so on.

In what follows I focus on the 2-point function and furthermore

restrict to the very simple class of insertions made only of the two

scalars

Z =
1√
2
(Φ1 + iΦ2) , X =

1√
2
(Φ3 + iΦ4) .

N. Drukker, Comments on Wilson loops 25 Integrability workshop, Golm
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The conformal dimension

For the line, the Ward identity of broken dilatation symmetry is

(∆1 + ∆2 + t ∂t)W [O2(t)O1(0)] = 0 .

This equation is solved by

W [O2(t)O1(0)] ∝
1

t∆1+∆2

.

This is then used to define the conformal dimension of those

insertions.

For the circle the equation is

(∆1 + ∆2 cosψ + sinψ ∂ψ)W [O2(ψ)O1(0)] = 0 .

This equation is solved by

W [O2(ψ)O1(0)] ∝
cos|∆1−∆2|(ψ/2)

sin∆1+∆2(ψ/2)
.

N. Drukker, Comments on Wilson loops 26 Integrability workshop, Golm
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Gauge theory calculation

Perturbation theory

At tree level each Z will have to be contracted with a Z̄ and each

X with a X̄. In a convenient gauge the holonomy in the Wilson

loop will not contribute and the 2-point function is given by

〈

W [O′†(t)O(0)]
〉

=
〈

Tr [O′†(t)O(0)]
〉

.

This is a single trace over two operators separated in space.

N. Drukker, Comments on Wilson loops 27 Integrability workshop, Golm
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Spin chain

The planar 2-point function of local operators has an interpretation

in terms of periodic spin-chains. At leading order there is a similar

identification to the one in the last slide, only that it is periodic. In

our case the same seem interpretation seems to hold, only that the

spin-chain is open. Each word has a first letter and a last letter and

there is only a single trace, so the order has to be kept

From this we find that the expectation value of the Wilson loop

(with words of length K) is

〈

W [O′†(t)O(0)]
〉

∝
(

λ

8π2t2

)K

I .

I is the identity matrix identifying the two insertions.

N. Drukker, Comments on Wilson loops 28 Integrability workshop, Golm
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b. c.a.

At one-loop there are three types of diagrams that do not involve

the Wilson loop. They are the self energy graph (a), a gluon

exchange “H-diagram” (b) and the scalar interaction vertex

“X-diagram” (c). Each graph diverges and to renomalize it the

Wilson loop has to be multiplied by the relevant Z-factors

Zself-energy = I +
λ

8π2
lnΛ I , ZH = I − λ

16π2
lnΛ I ,

ZX = I +
λ

16π2
(I − 2P ) lnΛ .

P is the permutation matrix replacing two adjacent letters.

N. Drukker, Comments on Wilson loops 29 Integrability workshop, Golm
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There are also graphs the involve the Wilson loop

Those do not depend on the flavor index (Z or X) and give a

renormalization factor

Zboundary = I − λ

8π2
lnΛ I .

Together K self-energy graphs, K − 1 of the H and X ones and the

two boundary contributions give

Ztotal = I +
λ

8π2
lnΛ

K−1
∑

k=1

(I − Pk,k+1) .

N. Drukker, Comments on Wilson loops 30 Integrability workshop, Golm
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Open and closed spin-chains

Consider the closed spin-chain of length 2K. It has a one-loop

Hamiltonian

Zclosed = I +
λ

16π2
lnΛ

2K
∑

k=1

(I − Pk,k+1) .

Now impose reflection invariance, so site k and 2K + 1 − k are

equal. Then the spin-chain is effectively open with length K and

the interaction terms between the K and K + 1 spins as well as

between the first and last spin cancel, so the Hamiltonian can be

written as

Ztotal = I +
λ

8π2
lnΛ

K−1
∑

k=1

(I − Pk,k+1) ,

which is what we had before.

Using this orbifolding trick it’s easy to solve this open spin-chain.

N. Drukker, Comments on Wilson loops 31 Integrability workshop, Golm
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The Bethe ansatz

This Z-factor gives the matrix of anomalous dimensions which has

to be diagonalized. In the case of local operators this matrix is the

same as a Heisenberg spin-chain Hamiltonian that was solved by

Bethe. In our case it’s the open version of the spin-chain, instead of

the periodic one.

Simplest way to solve it is by doubling the chain and solving for

symmetric configurations of the resulting periodic chain.

Blah, blah, blah Magnon

|ψ〉 =
K

∑

k=1

cos p(k − 1/2) |k〉 .

Yada, yada, yada rapidities

un =
1

2
cot

pn
2
.

N. Drukker, Comments on Wilson loops 32 Integrability workshop, Golm



'

&

$

%

La, la, la Bethe equations

(

uj + i/2

uj − i/2

)2K

=
M
∏

k=1

k 6=j

(uj − uk + i)(uj + uk + i)

(uj − uk − i)(uj + uk − i)
.

badabeem, badabam anomalous dimensions

γn =
λ

2π2

M
∑

k=1

sin2 pk
2

=
λ

8π2

M
∑

k=1

1

u2
k + 1/4

.

For a single impurity

pn =
πn

K
, un =

1

2
cot

πn

2K
, γn =

λ

2π2
sin2 πn

2K
∼ λn2

8K2
.

For many impurities can take the thermodynamic limit (hold on to

your excitment, details to come...).
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String theory description

In this case too we can find the minimal surfaces corresponding to

the solution. They should be Wilson loops, so open strings reaching

the boundary but they should also carry charges, so there should

be some angular momentum around the sphere directions.

We are able to find the solution for one angular momentum, then

we go to the BMN limit and quantize the small fluctuations around

it. Finally we study the system with two angular momenta.

Working with global Lorentzian AdS5 it is possible to map one

insertion to past infinity and one to the future. Then the Wilson

loop runs up and down two antipodal points on the boundary

S3 × R. The metric is

ds2 = L2
[

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dθ2 + sin2 θ dφ2 + · · ·

]

,

N. Drukker, Comments on Wilson loops 34 Integrability workshop, Golm
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One angular momentum

We take the ansatz

ρ = ρ(σ) , θ = θ(σ) , t = ωτ , φ = wτ .

The string Lagrangean in the conformal gauge reduces to

L =
L2

4πα′
[

ρ′2 + ω2 cosh2 ρ+ θ′2 − w2 sin2 θ
]

.

The equations of motion are quite simple

ρ′′ − ω2 cosh ρ sinh ρ = 0 ,

θ′′ + w2 cos θ sin θ = 0 .

The relevant solution requires w = ω and is

sinh ρ =
1

sinhωσ
, sin θ = tanhωσ .

N. Drukker, Comments on Wilson loops 35 Integrability workshop, Golm
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This solution preserves 1/4 of the supersymmetries, the intersection

of those preserved by the basic Wilson loop and those preserved by

the scalar operators TrZJ (the BMN ground state). This can be

seen from both the gauge theory and from string theory.
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The BMN limit

It is also possible to zoom in on the center of AdS5 and the

equator of S2 and find this classical solution in the maximally

supersymmetric pp-wave geometry studied by BMN. The Wilson

loop will become an infinite solitonic string running through that

space.

Quantizing the fluctuations of this string we find the modes that

are analogous to the X insertions into the spin-chain. The

spectrum of those turns out to be the same as found from the

one-loop gauge theory calculation

∆ − J = ωn =

√

1 +
λn2

4J2
∼ 1 +

λn2

8J2
.
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Two angular momenta

We were able to go further and look for classical solutions carrying

angular momentum in two planes. Those correspond to spin-chains

with a large number of both Zs and Xs.

On the gauge theory side that is given by the spin-chain in the

thermodynamic limit. That is quite tedious to review, but it

involves solving for a large number of Bethe roots that condense

into cuts in the plane. Luckily for us, the people studying closed

spin-chains chose cuts that are symmetric around the imaginary

axis, so they automatically are also solutions of our Bethe

equations.

The only difference was that we had to take only one of the cuts

into consideration, so that left us with the task of playing around

with some factors of 2.
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We arrived at the equation for the dimension of operator with M

impurities in a chain of length K

γM =
λ

8π2K
K(k)

(

2E(k) − (2 − k2)K(k)
)

,

where k is given by the solution to

M

K
=

1

2
− 1

2
√

1 − k2

E(k)

K(k)
.

K(k) and E(k) are elliptic integrals.
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On the string theory side we found equations similar to those of

folded strings, but slightly more complicated.

The solution is as follows: Away from the center of AdS5 the

surface will look like the previous one but at the center of space it

will move off the S2 into another direction on S5. The equations

describing this part of the string are exactly the same as for folded

strings, only that instead of backtracking they connect to the rest

of the world-sheet and reach the boundary.

The quantum numbers carried by those operators are almost

exactly half of the folded strings and this exactly agrees with the

solution of the Bethe equations of the open spin-chain in the

thermodynamic limit.
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Discussion

• There are many many Wilson loop observables and tried to

organize the calculation around simple cases:

– SUSY.

– small deformations of the circle and SL(2,R).

– Other ways?

• The circle and the line preserve an SL(2,R) allowing to define

a CFT living along the loop.

• For two insertions into the circle found an open spin-chain that

gives the anomalous dimensions of the insertions. 〈W 〉 = #
d2∆ .

• In other cases the overall numerical coefficient # was

calculated using the matrix model.
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• The Gaussian matrix model has a very rich structure and

“knows” about strings, D3-branes and D5-branes.

• the 1/4 BPS loop allows to define some kind of BMN limit.

• Much more to do

– Full super-spin-chain.

– Higher loops (integrability?)

– higher point functions of insertions, or more general Wilson

loops

– ........
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Thanks

The end
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