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1. Introduction
1.1. String Theory and AdS/CFT correspondence

• Gauge Theory/String Theory duality. Can we build a strong coupling description
of QCD out of gravity?

• String Theory onAdS5 × S5 ←→ N = 4 SYM

• Important Objects: generating functionals, partition functions, weight/energy
spectrum...

• Problems and Solutions. Weak/Strong duality. BPS objects.

1.2. Spin Chains, BMN and Semiclassical Strings

• Following that idea, we consider the BPS stateTr[ZJ ]. This corresponds to a
massless mode of 10d SUGRA propagating on the sphere.∆− J = 0.

• What to do next? Smart idea: ConsiderTr[WZJ ] = J1+i2,5+i6Tr[ZJ ]. This
is the state with lowest energy and chargeJ ′ = 1 over the vacuum. Thus, it is
BPS.
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• Now we are getting somewhere. We have an impurity on a chain of letters. Let
us just do what we always do: Let’s construct a Bloch State.

Op ∼
∑

l

eilp(· · ·ZZZWZZZ · · · ) (1)

• There’s a catch! An honest string state should contain, at least, two excita-
tions with opposite momenta to be non vanishing because of trace. These states
are not, however, BPS. They are the next best thing to BPS states: Impurities
running in the chain. This problem can now be mapped to a Spin Chain with
∆ → H where our fundamental blocks are the magnons we just described.[
Minahan and Zarembo; Beisert, ...]

• We will forget about the trace and consider single excitation states at infiniteJ .
Are they BPS?

• It turns out that in theJ →∞ limit, the energy of these states can be calculated
in perturbation theory with the effective couplingλ′ = λ

J2 . Using symmetry
arguments it is possible to obtain the exact formula:

E − J =

√
1 +

λ

π2
sin2 p

2
(2)
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[Beisert]

This result uses thesu(2|2) × su(2|2) symmetry algebra extended by central
charges that make the chain dynamic. Closed string states are neutral under these
charges. Symmetries do not constrainf (λ)→ f (λ) = λ

π2 experimental result!

• On the string theory size this corresponds to states in the Plane Wave (BMN)
limit: an exact quantization atJ, λ → ∞ andpJ = fixed is possible[Beren-
stein, Maldacena, Nastase]. λ′ = λ

J2 expansion.

E − J =

√
1 +

λn2

J2
p =

2πn

J
(3)

• Other tools: Semiclassical Strings. Large quantum numbers.[GPK; Tseytlin
(and refs. therein)...]

1.3. Idea of this work

The aim of this work is:

• to reproduce the full structure of the magnon spectrum (sine dependence) from



Giant Magnons - Diego Hofman 6 1.3 Idea of this work

the string theory side. We will be working in the large radius limit. This means
λ→∞. Then, we expect

E − J =

√
λ

π

∣∣∣sin p

2

∣∣∣ (4)

Note that the limit we are considering here is different from BMN:p is fixed
andλ interpolates between gauge theory and string theory results. We will also
argue that the symmetries responsible for this formula in the string theory side
are the same as the ones studied by[Beisert].

• Identify string states dual to magnon states.

• Using these solutions, compute the semiclassical S-matrix dressing factor and
compare with AFS formula.[Arutyunov, Frolov, Staudacher]

• Bound States?
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2. Giant Magnons in Semiclassical String Theory
2.1. Localized excitations in a string

Strings in Flat Space

• Strings of finite worldsheet length.

−

X

X

+

1X

(d)

p

−p

(a)

(b) (c)

• Strings of infinite worldsheet length.
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+

−

(b) X

(a)

X

p

X1

(c)

2.2. Giant Magnons in the large J limit

• Solution obtained by minimizing the string action.

cos θ =
cos θ0

cosh
[

x−sin θ0t
cos θ0

] =
sin p

2

cosh
[

x−cos p
2 t

sin p
2

] (5)

tan(ϕ− t) = cot θ0 tanh

[
x− sin θ0t

cos θ0

]
= tan

p

2
tanh

[
x− cos p

2t

sin p
2

]
(6)
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• Coordinates and momentum identified by

dJ

dx
=

√
λ

2π
or dl =

√
λ

2π
dx (7)

vgauge =
dl

dt
=

dε(p)

dp
=

√
λ

2π
cos

p

2
, for p > 0 (8)

vstring =
dx

dt
= sin θ0 = cos

∆ϕ

2
(9)
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• Note that we allowed for an open string solution. This is equivalent to relaxing
the zero mode of the Virasoro constraints (or the trace in the gauge theory). We
can do this for an infinite string.

2.3. LLM coordinates, BPS states and SUSY algebra

p

i p

1

e

2x

x1

(a) (b)

• This coordinates are just a projection of the sphere onto the plane.

• The SUSY algebra in 10d SUGRA contains gauge transformation of theB field
under which the string is charged[Schwarz]. Therefore, open stretched strings
can carry winding charges associated. It is these charges that make the state
BPS. Analogous to strings stretched between branes.
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• This charges are proportional to the string length. Therefore:

k1 + ik2 =
R2

2πα′
(eip − 1) = i

√
λ

π
eip

2 sin
p

2
(10)

E − J = k0 =
√

1 + |k1 + ik2|2 =

√
1 +

λ

π2
sin2 p

2
(11)

• This algebra looks like the usual 2+1 Poincare algebra. Notice, however, that
boosts are not a symmetry but an outer automorphism of the algebra.

• Finally: Closed string states are neutral. (therefore, not BPS in general).

3. S-matrix, Bound States and the Sine-Gordon
Model

3.1. Sine-Gordon solutions, time delays and the S-Matrix

• Classical correspondence between Sine-Gordon and strings onR× S2.
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• Sine-Gordon solitons←→ String Theory Magnons.

• Nontrivial energy relationε =
√

λ
π

1
Esg

.

• Lorentz symmetry in Sine-Gordon responsible for one parameter solutions in
string theory. Again, this is not a symmetry of the theory.

• Scattering solutions in sine-gordon map to scattering of magnons.

• x andt are the same−→ time delays are the same (S-matrices are not though).

• WKB approximation gives phase as∂δ12(ε1,ε2)
∂ε1

= ∆T12 [Jackiw, Woo]. This
agrees (modulo length redefinition) with the AFS formula, derived in an indirect
way.

∆T12 =
2

γ1v1
log vcm (12)

δ =

√
λ

π

{[
− cos

p1

2
+ cos

p2

2

]
log

[
1− cos p1−p2

2

1− cos p1+p2

2

]}
− p1

√
λ

π
sin

p2

2
(13)
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• Length redefinition. Far away from the excitationE andJ have constant den-
sities. But inside the excitation, our gauge says the have just constantE. To
compare with gauge theory we should go to coordinates whereJ is constant.
The mismatch will be given in the phase aseip∆Length. (Compare with BA equa-
tions).

∆l =

∫
dx

dJ

dx
=

∫
dx

dE

dx
− (

dE

dx
− dJ

dx
) =

2π√
λ

∆x− ε (14)

• Space-time picture.

3.2. Bound States

• Bound State solutions are given by breathers.

• Energy given by sum of energies (integrability) with complex momenta (pi =
p± iq). Inversion and Numerical studies.
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• Time dependence allows for WKB quantization.dn = T
2π

dε|p.

ε =

√
λ

π
(sin

p1

2
+ sin

p2

2
) =

2
√

λ

π
sin

p

2
cosh

q

2
=

√
n2 +

4λ

π2
sin2 p

2
(15)

• Space-time picture.

(a) (b)

• Explicit bound state solutions: Backlund transformations and the dressing method
[Spradlin and Volovich]

• Stability and Poles.

4. Further progress
• BPS bound states andthe one under the square root formula[Dorey; Chen,

Dorey and Okamura]
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• Finite Size Effects[Arutyunov, Frolov, Zamaklar]

• Analysis of classical solutions in similar limits[Minahan, Tirziu and Tseytlin;
Kruczenski, Russo and Tseytlin]

• Magnons inβ-deformed backgrounds[Chong-Sun Chu, Georgiou and Khoze]

• Multispin solutions[Spradlin adn Volovich; Bobev and Rashkov; Kruczenski,
Russo and Tseytlin]

5. Conclusions
• Fundamental excitations have been identified on both sides of correspondence.

• Symmetries responsible for the spectrum were matched.

• S-matrix calculated semiclassically and found to agree with the AFS formula.

• Bound state spectrum. Coupling dependence. Poles in S-Matrix?

• Future directions: further investigation of the S-matrix for more general bound
states (in progress). Crossing symmetry, poles, etc.
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