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I Introduction

Central problem: How to quantise the string in AdS5 × S5 background ?
It seems that this can be rephrased as the question of solving a particular

set of algebraic equations — quantum string Bethe equations.

This talk

Limits

Various corners where
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Basic ingredients for the Bethe equations:

Infinite volume:
exist set of elementary, asymptotic (one particle) excitations magnons with

exact dispersion relation E(p)
multi-particle spectrum

Etot =
∑

i

E(pk)

m-body interaction 2-body S-matrices S(pk, pj)
and pk, pj do not change in scattering

Finite volume L:

relevant parameters 1/L, ∆int/L
leading 1/L effects from periodic boundary conditions on Ψ(x1, . . . , xN ):

Ψ(x1, . . . , xN ) = Ψ(x2, . . . , xN , x1 + L) ⇔ Bethe equations

constraints on pk

all the rest the same as in infinite volume
it may work exactly (e.g. XXX spin chain)



Bethe equations in string theory:

significant simplifications in infinite volumes

generic string state in finite volumes complicated situation

not clear how much of Bethe will survive

Our goals:

understand what is volume in string theory, how finite V affects quantum
string Bethe “program”

understand better nature of elementary excitation in V ≤ ∞, in particular the

unusual dispersion relation

ǫ(p) =

√

1 +
λ

π2
sin2 p

2
.



(I) Setting the stage: volume in string theory

Uniform gauge–conserved charges Qa is uniformly distributed along the

string world sheet V ∼ Qa

Background with 2 isometries:

ds2 = Gtt dt2 + Gφφ dφ2 + Gij dxidxj

isometries

instead of (t, φ) ↔ (x+, x−)

x− = φ − t , x+ = (1 − a) t + a φ

a–labels various “l.c.” coordinates

S = −
√

λ

4π

∫ r

−r

dσdτ γαβ∂αXM∂βXN GMN , γαβ ≡
√
−hhαβ



(I) Setting the stage: volume in string theory

Imposing the gauge:
(1) isometries charges

translation in (t, φ) (E, J)

E = −
√

λ

2π

∫ r

−r

dσ pt , J =

√
λ

2π

∫ r

−r

dσ pφ .

or translation in (x−, x+) (P−, P+)

P− =

√
λ

2π

∫ r

−r

dσ p− = J − E , P+ =

√
λ

2π

∫ r

−r

dσ p+ = (1−a)J + a E .

(2) fixing the gauge:

(a) x+ = τ + amσ a = 1

2
light-cone gauge

a = 0 temporal gauge

(b) p+ = 1 uniform

√
λ

2π

Z r

−r

dσp+ = P+
r =

π
√

λ
P+

string “size” set by charge P+

(proper size can be small, zero!)



(I) Setting the stage: volume in string theory

(3) first order form of action

S =

√
λ

2π

∫ r

−r

dσdτ

(

p−ẋ+ + p+ẋ− + piẋ
i +

γ01

γ00
C1 +

1

2γ00
C2

)

C1 = p+x′
− + p−x′

+ + pix
′i ,

(4) solving constraints:

x′
− = −amp− − pix

′i

H = −p−(xi, x′i, pi) ⇒ H =

√
λ

2π

∫ r

−r

dσH = E − J

Hamiltonian for physical d.o.f. non-trivial equation for E

(r = π√
λ
P+ = π√

λ
((1 − a)J + E))

gauge fixed action:

S =

√
λ

2π

∫ r

−r

dσdτ
(

piẋ
i − H

)



(I) Setting the stage: how to isolate the magnon

world-sheet momentum

gauge-fixed S invariant under σ → σ + b with periodic boundary conditions

for xi, pi

pws = −
∫ r

−r

dσpix
′i =

∫ r

−r

x′
− ,

closed string: x− periodic

∆x− = pws = 0 , m = 0 level-matching

total momentum of multi-magnon configuration



(I) Setting the stage: how to isolate the magnon

Hence, if want one-magnon only need pws 6= 0 ∆x− 6= 0!

Solve closed string EOM dropping the level-matching condition:

consider OPEN string

Remarks:

this is NOT convenctional open string: xi periodic, ( ⇒ ∆x− = const.)

all this was valid for ANY P+ (finite or infinite)

momentum does not vanish at string end points! Flows out and flows in . . .

if r = ∞ (i.e. J = ∞) ⇒ finiteness of the energy ⇒ x′

i = 0 Neumann b.c. no

flow of momenta



(II) Constructing the Giant magnon

consider action on R× S2

S = −
√

λ

4π

∫ r

−r

dσ dτ γαβ (−∂αt∂βt + ∂αXi∂βXi) ,

X1 + iX2 =
√

1 − z2eiφ , X3 = z , −1 ≤ z ≤ 1

solve constraints imposing uniform-LC gauge S(z, z′, ż)

make ansatz

z = z(σ − vτ)

plug into S conserved charge Hred = ω−1
1−a+a ω

solving Hred w.r.t. to z′ get

z′2 =

(

1 − z2

(1 − a) (b2 − z2)

)2
z2 − z2

min

z2
max − z2

,



(II) Constructing the Giant magnon

Solution characterised by three parameters (a, ω, v)

0 ≤ a ≤ 1 , labels different gauges

1 ≤ ω < ∞

0 ≤ |v| ≤ 1

ω













z2
min = 1 − 1

ω2

z2
max = 1 − v2

integrate numerically
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It’s not smooth, but energy finite

here J1< J2 < J3



(II) Constructing the Giant magnon
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Target space shape of the magnon

to compute the dispersion relation

E − J =

√
λ

2π

∫ r

−r

dσH =

√
λ

π

∫ zmax

zmin

dz
H
|z′|

r =
π√
λ

P+ =

∫ r

0
dσ =

∫ zmax

zmin

dz

|z′|

pws = −
∫ r

−r

dσpzz
′ = 2

∫ zmax

zmin

dz|pz|



































E − J = f(zmin, zmax; a) = f(pws, J ; a)



Properties of the solution

a = 0 gauge: x+ = t = τ ⇒ ∆x− = ∆ϕ (x− = ϕ − t)

Magnon
Path

Equator

sin θ = 1

ω

sin θ = v

∆ϕ

Magnon
Path

Equator

sin θ = 1

ω

sin θ = v

∆ϕ

movies: large v small v



Properties of the solution

Limit J → ∞,i.e. infinitely long “string-chain”

string becomes rigid, no wiggling!

dispersion relation

E − J ≡ ǫ =

√
λ

π

∫ zmax

zmin

dz
H
|z′| =

√
λ

π

√

1 − v2 ,

pws = 2

∫ zmax

zmin

dz|pz| = 2arccos v .

dispersion relation

ǫ(pws) =

√
λ

π

∣

∣

∣
sin

pws

2

∣

∣

∣

cf. ǫ(pk) =
q

1 + λ

π2 sin2
`

pk

2

´

− 1

see sine !
[Hofman, Maldacena]



Properties of the solution

Finite J ∼ finite length “string-chain”

in general dispersion relation complicated

look at large J limit:

dispersion relation

E − J =

√
λ

π

∣

∣

∣
sin

pws

2

∣

∣

∣

[

1 − 4

e2
sin2 pws

2
e−R

− 4

e4
sin2 pws

2

(

R2(1 + cos pws) + 2R(2 + 3 cos pws + ap sin pws)

+ 7 + 6 cos pws + 6apws sin pws + a2p2
ws(1 − cos pws)

)

e−2R + · · ·
]

.

R =
2πJ√

λ
∣

∣sin pws

2

∣

∣

+ apws cot
pws

2
.



Properties of the solution

Comments:

dispersion relation depends on a – gauge parameter

the dependence on a disappears in J → ∞ limit

if a 6= 0 ⇒ E − J not periodic in pws ⇒ a = 0 seems preferred

From R ∼ Vol/∆M , Vol = 2π√
λ
J:

read-off “size” of magnon ∆M ∼ sin(p/2)

agrees with Hubbard [Rej,Serban,Staudacher; Minahan’s talk]

BMN: Vol-finite and p ∼ 1/
√

λ ⇒ ∆M → 0 ⇒ R → ∞



Properties of the solution

Reconstructing closed string – multi soliton configuration

in general non-trivial

there still exists a simple superposition (cf. J = ∞)

t = 0 t = T

multi-magnon open,

non-rigid string

all t

multi-magnon closed,

rigid string !



Symmetry algebra at finite J

key step: drop level matching condition

consider simpler example:

flat space L.C. gauge, dynamical generators of the Lorentz algebra

J i− =

∫ 2π

0
dσ (xiẋ− − x−ẋi) .

(non)-conservation

J̇ i− =

∫ 2π

0
dσ (xiẍ− − ẍix−) = −xi

′(0)
(

x−(2π) − x−(0)
)

conserved for: (a) Neumann open string or

(b) closed string

if J = ∞ have Neumann b.c. all generators conserved
if J–finite dynamical generators broken!



Symmetry algebra at finite J

strings in uniform a-gauge on R× S2

J̇MN = −
√

λ

2π

∫ r

−r

dσ∂σ

(

γσα∂αx[MxN ]

)

= −
√

λ

2π

(

γσα∂αx[MxN ]

)

∣

∣

∣

∣

σ=r

σ=−r

get that:

J12 ↔ φ is conserved

J13, J23 not conserved since x− not periodic (i.e. φ = τ + (1 − a)x−)

curiously all conserved when a = 1 (i.e. φ = τ)

N.B

For full model (in arbitrary “l.c.” gauge)

For J = ∞ all generators conserved
If relax level-matching, by explicit computation, one recovers
centrally extended su(2|2) × su(2|2) algebra

[G.Arutyunov, S.Frolov, J.Plefka and M.Zamaklar, to appear]



Finite J Giant magnon in conformal gauge

conformal gauge

γµν = diag(−1, 1)

and the condition t = τ (close to a = 0 L.C. gauge)

motivated by L.C. analysis, impose boundary conditions

z(r, τ) − z(−r, τ) = 0 , ∆φ = φ(r, τ) − φ(−r, τ) = p = const. ,

i.e. open string with fixed separation of end-points

make ansatz

ϕ = φ − ωt , ϕ = ϕ(σ − vωτ) , z = z(σ − vωτ) .

integrate analytically

z =

√
1 − v2

ω
√

η
dn

( 1√
η

σ − vτ√
1 − v2

, η
)

,

η =
1 − ω2v2

ω2(1 − v2)
.



Finite J Giant magnon in conformal gauge

world-sheet solution smooth, unlike in L.C. gauges
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target space picture agrees with a = 0 gauge

dispersion relation etc. the same as for a = 0 gauge

see that period goes to infinity as J → ∞



Summary/outlook

Giant magnons — good laboratory for studying properties of isolated magnon:

seen sin: “lattice” ↔ compactness of S2

new prediction for the dispersion relation

size of magnon, and structure of exp corrections agrees with Hubbard

algebra broken at finite J



Summary/outlook

Giant magnons — good laboratory for studying properties of isolated magnon:

seen sin: “lattice” ↔ compactness of S2

new prediction for the dispersion relation

size of magnon, and structure of exp corrections agrees with Hubbard

algebra broken at finite J

Questions:

Is Bethe going to survive finite J?

Implication of the reduced algebra?

gauge dependence at finite J ⇒ a = 0 preferred?

(i.e. is finite J Bethe/i.e. Hubbard possible only in particular gauge?)


