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QCD & ABJM

In QCD, twist-2 anomalous dimensions γ(N) enter the evolution equations of deep inelastic scattering
(DIS) and are physically very relevant. The analysis of γ(N) suggests, among others, the following
three basic predictions about the large N (quasi-elastic) regime:

(a) Logarithmic scaling. The large N dominant term is logarithmic, γ(N) ∼ f(g) log N , where
f(g) is the universal cusp anomalous dimension

(b) Gribov-Lipatov reciprocity. This is a crossing relation which implies an infinite set of
constraints on the subleading terms appearing in the large N expansion of γ(N)

(c) Low-Burnett-Kroll wisdom. The anomalous dimension γ(N) develops high powers of log N
increasing with the perturbative order, the leading terms being of the form (log(N)/N)k .
Nevertheless, many of these terms are inherited from lower order calculations. This is
independent on (b) and can be traced back to quite general old results simply related to gauge
invariance

We believe that these are valid motivations for investigating the QCD-inspired properties (a), (b) and (c)
in the ABJM theory. This is a three dimensional U(N)× U(N) gauge theory with four complex scalars
in the (N, N) representation, their fermionic partners, and a Chern-Simons action with levels +k, −k.
This theory has N = 6 superconformal symmetry osp(2, 2|6). ABJM can be considered as the low
energy theory of N parallel M2-branes at a C4/Zk singularity. In the large N limit this is M theory on
AdS4 × S7/Zk . For fixed λ = N/k we can describe it by type IIA string on AdS4 × CP3 which is
classically integrable.The manifest (non abelian) part of the R symmetry is SU(2)× SU(2). The
complex scalars can be written as two doublets transforming as (2, 1) and (1, 2). Under the gauge
group they transform as (N, N) and (N, N). At leading order (two loops, λ2 in ’t Hooft coupling λ), the
dilatation operator for single trace operators built with these scalars is a SU(4) integrable spin chain



Twist operators
Twist operators can be found in a sl(2)-like sector of ABJM. At strong coupling and large spin they
behave quite similarly to the corresponding ones in AdS5 × S5 : their dual string state is a folded string
rotating in AdS3 with large spin N and with angular momentum J ∼ log N in CP3 in close analogy to
the folded string solution in AdS5 × S5 . At weak coupling, they are composite operators in totally
different theories. Nevertheless, both N = 6 SCS and N = 4 SYM are integrable and the all-loop
Bethe equations in the sl(2) sectors are very close. Also, from the leading order analysis of twist-1
operators it seems that maximal transcendentality Ansätze are feasible.

Twist operators in the sl(2) sector of ABJM

The all-loop Bethe equations for ABJM can be
summarized by the osp(2, 2|6) diagram; we consider
twist operators in the sl(2) sector where we excite
symmetrically the same number N of u4 and u4 roots.

As in the N = 4 case, the integer L can be identified with the twist of the operator. The Bethe
equations involve the deformed spectral parameters x± defined by
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The only difference compared with N = 4 SYM is the extra minus sign. This will turn out to be
definitely relevant to our analysis. The factor σBES is the dressing phase which will play no role at the
perturbative order explored in this paper.



Twist-1
The two-loop problem & The four-loop ABA result
The two- and four-loops anomalous dimension can be computed exactly (using maximal and uniform
trascendentality) and reads
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Also, we notice the following remarkable shift symmetry
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The four-loop Wrapping Contribution
The full anomalous dimension of twist-1 operators receives a wrapping contribution at four loops
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and (QN is the leading order Baxter function)



S(q, Q, N) = (−1)Q
QN

„
q−i(Q−1)

2

«
QN

„
q−i(Q+1)

2

«
QN

„
q+i(Q−1)

2

«
QN

„
q+i(Q+1)

2

« ,

M(q, Q, N) = 2
Q−1X
j=0

2664 QN

„
q−i(Q−1)+2 i j

2

«
QN

„
q−i(Q−1)

2

«
3775

2 "
1

2 j − i q − Q
−

1

2 (j + 1) − i q − Q

#
.

This formula takes into account the different SU(2|2) structure of the S-matrix as compared with
N = 4. Under summation over Q, the integral can be evaluated in terms of the kinematical residue

W(N) = 2 π i
∞X

Q=1
Res

q=i Q
W(q, Q, N) →W(N) = −2 ζ2 + rN ,

where rN is a rational number. Unfortunately, we have been unable to find a closed formula for rN .
However, we can show that at large N the leading term in W is

W(N) = −
2 log 2

N
+ subleading.

In particular, this proves that the cusp anomaly is not modified by the wrapping which goes like
(log N)/N at large N .

The six-loop ABA result
γABA

6 (N) = a very long formula ... the shift symmetry is broken. We do not know whether it must be
an all-order property of the anomalous dimension. To any extent, the six loop result is affected by
next-to-leading wrapping contributions ...



Twist-2

The two-loop problem & The four-loop ABA result
Again, the anomalous dimension can be computed exactly and reads
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As in the twist-1 case, there is a shift symmetry since γABA
2 enjoys the exact property

γ
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After some calculation, we obtain
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Eq. (1) is proved by means of the NLO Baxter equation and has again the exact property

γ
ABA
4 (2 n + 1) = γ

ABA
4 (2 n), n ∈ N.



The six-loop ABA result
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Remarkably, shift symmetry is not broken. Wrapping effects are expected to show up at this order.



Reciprocity and LBK wisdom: Large N analysis
Our main aim is the analysis of possible QCD-inspired properties showing up in γABA

2n (N): mimicking
the N = 4 case, we shall work out the expansion of the anomalous dimensions at large N and look
for peculiar properties

γ(N) = α(N) + (−1)N β(N),

where α and β have a smooth expansion in 1/N with possible logarithmic enhancements. We shall
consider the even N case. The general form of the large N expansion is expected to be

γ(N) = fCS (h) log N +
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We have already checked that the leading cusp logarithm is in agreement with property (a)
Concerning properties (b)-(c), they are conveniently expressed in terms of the function P defined order
by order in h by the functional relation
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The large N expansion of P is similar to that of γ and reads

P(N) = fCS (h) log N +
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The Gribov-Lipatov reciprocity and LBK cancellations can be concisely expressed as follows.
- Gribov-Lipatov reciprocity. There is a constant κ such that the large N expansion of P(N) runs

in integer inverse powers of J2 = N (N + κ).
- Low-Burnett-Kroll cancellations. Some (maximal) logarithms are missing in Eq. (8). This

implies that there are inheritance relations among the logarithms of Eq. (8).



We recall once again that these seemingly technical conditions have a clear physical origin in the QCD
context and are widely checked in N = 4. It remains to look for their manifestation in ABJM, at least
at the level of the multi-loop asymptotic anomalous dimensions.

Twist-1
We define n = N eγE and consider even N . The expansion of the two loop anomalous dimensions is

γ
ABA
2 = 4 log(2 n) +

2

3 n2
−

7

15 n4
+

62

63 n6
−

127

30 n8
+ · · ·

γ
ABA
4 =

 
−

4

3
π

2 log(2 n) − 12ζ3

!
+

8 log(2 n)

n
+

0@2 log(2 n) −
2π2

9
+ 2

1A 1

n2
+

+

 
4

3
−

8

3
log(2 n)

!
1

n3
+

0@− 5

2
log(2 n) +

7π2

45
+

1

12

1A 1

n4
+

+

 
56

15
log(2 n) −

62

45

!
1

n5
+

0@7 log(2 n) −
62π2

189
−

269

60

1A 1

n6
+

+

 
914

315
−

248

21
log(2 n)

!
1

n7
+

0@− 285

8
log(2 n) +

127π2

90
+

76613

2016

1A 1

n8
+ · · ·

For twist-1, we do not discuss the six-loop result which is heavily affected by the wrapping corrections.
The two loop result is parity invariant under the transformation (κ = 0 in the Gribov-Lipatov
reciprocity)

n → −n, log n =
1

2
log(n2) → log n.

This is not a symmetry of the four loop result. Nevertheless, we can look at the four loop P function
(P =

P∞
n=1 P2n h2n )

P4 = γ4 −
1

2
γ2 γ

′
2 .



and its expansion is
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We see that P4 is indeed parity invariant ! This
structure implies that all terms in γ4 odd under
n → −n are precisely inherited from the
two-loop anomalous dimension
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We can summarize the result by saying that the twist-1 ABA anomalous dimension is reciprocity
respecting under n → −n up to four loops. Instead, no LBK cancellation is observed. The
logarithmic enhancement which are observed in γ4 are the same as in P4 . This means that the single
logarithms appearing in γ4 are not related to the lowest order γ2 .

Twist-2
For twist-2, we use the variable n = N/2 and we find, with n = n eγE , the expansions at 2 and 4 loops
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as well as the six-loop result
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Again, possible structures are best investigated by looking at the P functions. Using M = N/2 as
argument and inverting the relation
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Expanding at large n, we find
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We did not find any simple parity invariance analogous to what is found in N = 4. Nevertheless, LBK
cancellations are present. Indeed, the structure of the logarithmic expansion is peculiar. Apart from
the cusp anomaly, γ2 has no logarithms, γ4 has simple logarithms, and γ6 has squared logarithms.
Instead, P2 and P4 are logarithm-free, whereas P6 has only simple logarithms.



This implies that the leading logarithms in the anomalous dimension are all inherited from the lowest
order γ. In more details, one can check the remarkable relations

γ
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We can summarize this result by saying that the twist-2 ABA anomalous dimension has leading
order LBK inheritance up to six loops.

Conclusions
It is natural and puzzling to ask whether QCD-inspired physical properties of N = 4 SYM twist
operators are robust enough to carry over to the ABJM context. In this paper, we have focused on two
non-trivial features of N = 4 SYM twist operators, Gribov-Lipatov reciprocity and Low-Burnett-Kroll
cancellations. We have shown that these properties show up in a much softer and broken way
compared to N = 4. Nevertheless, various intriguing remnants of these physical properties are still
found in ABJM.
Indeed, the multi-loop analysis of the (asymptotic) anomalous dimensions of twist-1 and 2 operators
reveals a curious pattern. Twist-1 operators obey a four loop parity invariance closely related to
conventional Gribov-Lipatov reciprocity. Instead, twist-2 operators have no non-trivial parity invariance,
but display a variety of LBK cancellations up to six loops.
Were it not for the N = 4 case, one could naively conclude that these features are accidental. We
believe that this is not the case. Technically, they are due to the partial similarity of the ABJM and
N = 4 sl(2) sectors. Physically, it would be very interesting to look for arguments leading to
Gribov-Lipatov reciprocity and Low-Burnett-Kroll wisdom in the case of the N = 6 superconformal
Chern-Simons theory.
A final comment is deserved by wrapping corrections. We have applied the Kazakov-Gromov-Vieira
formalism to the evaluation of the leading wrapping correction to twist-1 operators. It would be very
interesting to work out closed formulae for this correction as well as explicit diagrammatic checks.



(a) Log scaling
The anomalous dimensions of composite operators carrying a large Lorentz spin scale (at most)
logarithmically with the spin. This result is just one of the facets of a more general Sudakov
phenomenon. The logarithmic scaling of anomalous dimensions is a universal feature of all gauge
theories ranging from QCD to the maximally supersymmetric N = 4 Yang-Mills (SYM) theory. In
particular, in the simplest case of twist-two Wilson operators with large Lorentz spin N � 1, the
anomalous dimension behaves as (in the adjoint representation of the SU(Nc) group)

γ(λ) = 2Γcusp(λ) ln N + O(N0) ,

where λ = g2
YMNc is the ’t Hooft coupling constant and Γcusp(λ) is the so-called cusp anomalous

dimension. Γcusp(λ) is not universal however and depends on the theory under consideration.

(b) Gribov-Lipatov reciprocity
The scale dependence of QCD parton distribution functions in deep inelastic scattering is governed by
the the DGLAP evolution equations.The non perturbative ingredients are the space-like (S) splitting
functions PS(x), related to the anomalous dimensions of twist-2 operatorsthrough a Mellin
transformation.



The related crossed process of e+e− annihilation into hadrons involves the non perturbative
fragmentation functions. In their scale evolution the role of splitting functions is played by the
so-called time-like (T) splitting functions PT (x), which allow to define time-like anomalous dimensions
γT (N) again by a Mellin transformation. A first relation between PS(x) and PT (x) is the
Drell-Levy-Yan relation

Drell-Levy-Yan : PT (x) = −
1
x

PS

„
1
x

«
.

This is an analytic continuation from one kernel to the other which passes through the singular point
x = 1 at the border of the respective disjoint physical regions. It is a relation trivial at one-loop and
full of subtleties at higher orders.
A second equation has been proposed by Gribov and Lipatov

Gribov-Lipatov : PT (x) = PS(x) ≡ P(x).

Assuming this result and the (true) Drell-Levy-Yan relation, we get the following reciprocity for the
common function P(x)

Gribov-Lipatov reciprocity : P(x) = −x P
„

1
x

«
.

In Mellin spaceit can be shown that this means (in the sense of asymptotic expansions at large N )

P(N) = f(J2), J2 = N (N + 1), N →∞.

Gribov-Lipatov reciprocity holds at one-loop, but fails at two loops.



(c) LBK Theorems
... old general results which improve the eikonal leading order factorization. They rely on gauge
invariance alone and are of a quite general validity; the LBK theorems tell us that the that the soft
gluon emission has a classical nature.

LBK taught us that both the singular, and the constant terms, in the photon/gluon emission are
universal while the quantum contributions vanish in the x → 1 limit as (1− x). beyond the leading
order, these structures must be therefore deducible rather than genuine higher order corrections.


