Imperial College London

Classification of Yangians of Lie Superalgebras and their R-matrices Peter Koroteev¹, Adam Rej² and Fabian Spill²

¹ School of Physics and Astronomy, University of Minnesota, U.S.A., ² The Blackett Laboratory, Imperial College London, U.K.

Motivation

- \blacktriangleright Yangians of superalgebras appearing in many physical systems, i.e. AdS/CFT
- \triangleright Derive an abstract, representation-independent form of R-matrix for Yangians of Lie superalgebras
- \triangleright Derive fundamental R-matrix for simple Lie superalgebras including complicated dressing factors

- \blacktriangleright Lie algebras and its subalgebras are denoted by small gothic characters e, \mathfrak{h}, \ldots
- \blacktriangleright Lie algebra and Yangian generators are denoted by capital gothic characters $\mathfrak{E}, \mathfrak{H}, \mathfrak{K}, \ldots$
- $E_{i,j}$ denotes an $n \times n$ matrix with the only nonzero entry at (i, j) position.
- \blacktriangleright Although we only consider classical Lie algebras here, we will need the notion of q-numbers

 $n \rightarrow [n]_q :=$ $q^n - q^{-n}$ $q - q^{-1}$

 \blacktriangleright The bracket $(.)_m$ denotes m-th coefficient in the Taylor expansion

Notations

 \blacktriangleright Consider Lie (super)algebra $\mathfrak{gl}(n|m)$ and its vector representation \blacktriangleright Yangian $Y(\mathfrak{gl}(n|m))$ is isomorphic to associative algebra $U(R)$ generated by 1 and the matrices

> \overline{T} $i_j^{(k)}, \quad i,j=\overline{1,n+m}, \quad k\in\mathbb{Z}_{\geq 0}$

$$
\biggl(f(x) \biggr)_{m+1} = \biggl(\frac{d^m \, f(x)}{dx^m} \biggr)_{x=0}
$$

Yangian in RTT Realization

 $ij\$ \mathfrak{H} (k) i , E (k) i , F (k) $\sum_{i=1}^{(k)} |i = \overline{1, n + m - 1}, k \in \mathbb{Z}_{\geq 0}$, then from RTT defining relations it follows

> $\left[\mathfrak{H}\right]$ (0) i , E (l) $\left[\begin{smallmatrix} \iota \ \jot \end{smallmatrix} \right] = A_{ij} \mathfrak{E}_{ij}$ (l) \dot{j} \mathfrak{h} $\left[\mathfrak{H}\right]$ (0) i , F \bigcirc $\left[\begin{smallmatrix} \bigcup b \ j \end{smallmatrix} \right] = - A_{ij} \mathfrak{F}$ (l) \dot{j} . . .

 \blacktriangleright These can be also taken as the abstract defining relations of the Yangian \blacktriangleright Representation of the Chevalley-Serre basis:

It is convenient to gather them in the formal series

 $1 \leq i < n: \quad \mathfrak{H}_i = E_{i,i} - E_{i+1,i+1}, \mathfrak{E}^+ = E_{i,i+1}, \mathfrak{E}^- = E_{i+1,i}$ $i=n: \quad \mathfrak{H}_n = E_{n,n} + E_{n+1,n+1}, \mathfrak{E}^+ = E_{n,n+1}, \mathfrak{E}^- = E_{n+1,n}$ $n < i < n+m: \ \ \mathfrak{H}_i = - E_{i,i} + E_{i+1,i+1}, \mathfrak{E}^+ = E_{i,i+1}, \mathfrak{E}^- = - E_{i+1,i}$ For the case $n = m$, the additional Cartan generator \mathfrak{H}_{2n} must be introduced

$$
T(\lambda) = \sum_{i,j=1}^n \sum_{n=0}^{+\infty} T_{ij}^{(n)} \lambda^{-n} E_{i,j},
$$

 $T(\lambda)$ satisfy the so-called RTT relations

$$
R^{(n)}(\lambda - \mu)(T(\lambda) \otimes 1)(1 \otimes T(\mu)) = (1 \otimes T(\mu))(T(\lambda) \otimes 1)R^{(n)}(\lambda - \mu),
$$

$$
\operatorname{qdet}(T(\lambda)) = 1,
$$

where qdet is the quantum determinant and the Yang matrix is given by

$$
R^{(n)}(\lambda) = 1 \otimes 1 + \sum_{1 \le i,j \le n} \lambda^{-1} E_{i,j} \otimes E_{j,i}
$$

 \blacktriangleright Commutation relations for $T(\lambda)$

 $(\lambda - \mu)[T_{ij}(\lambda), T_{kl}(\mu)] = T_{kj}(\mu)T_{il}(\lambda) - T_{kj}(\lambda)T_{il}(\mu)$

 $\blacktriangleright T_{ij}(\lambda)$ is a generating function for the Yangian $Y(\mathfrak{gl}(n|m))$ generators. Expansion around $\lambda = \infty$ gives these generators and commutation relations on $T_{ij}(\lambda)$ give defining relations on Yangian generators as well as Serre relations. Coproduct for Yangian generators follow from coproduct of $T_{ij}(\lambda)$.

 \blacktriangleright Call the diagonal and upper/lower triangular part of T (k)

 $\mathcal{R}_{12} = \mathcal{R}_{+}\mathcal{R}_{H}\mathcal{R}_{-}.$

The \mathcal{R}_+ and \mathcal{R}_- are defined through

 \blacktriangleright Classical r-matrix: ∞

► Quantum R-matrix of Yangian: $\mathcal{R} = \sum_{J \in \mathcal{Y}(\mathfrak{g})} J \otimes J^*$, where J^* is the dual of J

Invariant form for Yangian:

 $\sqrt{ }$ $(\mathfrak{E}_{i,k}^+, \mathfrak{E}_{j,l}^-) = -\delta_{ij}\delta_{k,-l-1}$ $\sqrt{ }$ $\left(\mathfrak{E}^{\top}_{i,k},\mathfrak{E}^{\pm}_{j,l}\right)=-(-1)^{|i|}\delta_{ij}\delta_{k,-l-1}$ $(\mathfrak{H}_{i,k}, \mathfrak{H}_{j,-l-1}) = -2$ \bigtriangleup_{ij} 2 \bigwedge^{n-m} (*n* \overline{m} \setminus $n \geq m$, \blacktriangleright The following matrix is of great importance, while constructing the universal R-matrix of g

> \mathcal{C} g $ij\$ $(q) = \ell^{\mathfrak{g}}(q) (A^{\mathfrak{g}}(q))_{ii}^{-1}$ $ij\$

- The constant $\ell^{\mathfrak{g}}(q)$ is defined as the *minimal* proportionality factor that makes $C^{\mathfrak{g}}(q)$ polynomial in q and q^{-1} . It is usually proportional to the dual coxeter number. However, for $\mathfrak{gl}(n|n)$ the dual coxeter number is zero and we have $\ell^{\mathfrak{g}}(0) = n$. In what follows $\ell^{\mathfrak{g}}(0) \equiv \ell^{\mathfrak{g}}.$
- \triangleright Triangular decomposition of $\mathfrak g$ into subalgebras of positive roots, Cartan and negative roots

 $\mathfrak{g}=\mathfrak{e}^+\oplus\mathfrak{h}\oplus\mathfrak{e}^-\,,$

- one has $[\mathfrak{e}_{\pm}, \mathfrak{h}] \subset \mathfrak{e}_{\pm}$. We denote Δ^+ be the space of positive roots of g.
- \blacktriangleright Triangular decomposition of Lie algebra induces similar decomposition of double Yangian $\mathcal{DY}(\mathfrak{g})$ which entails triangular decomposition of universal R-matrix

The case of $\mathfrak{gl}(n|n)$ continued

with $\theta(\alpha)$ being the parity of $\mathfrak{E}^{\pm}_{\alpha}$. The set of positive roots is defined by

 $\Xi^+ := \{ \gamma + n\delta | \gamma \in \Delta^+ \},$

where δ denotes the affine root and

 $[\mathfrak{E}^+_{\alpha}, \mathfrak{E}^-_{\alpha}] = a(\alpha)^{-1} \mathfrak{H}_{\gamma}, \quad \alpha = \gamma + n\delta, \quad \gamma \in \Delta_+(\mathfrak{g})$

The part corresponding to the Cartan part of the Yangain \mathcal{R}_H reads

$$
\mathfrak{H}_{2n} = \frac{1}{2} \left(\sum_{i=1}^{n} E_{i,i} - \sum_{i=n+1}^{2n} E_{i,i} \right)
$$

whereas for $n \neq m$ one may drop the unessential identity matrix. \blacktriangleright The non-simple positive/negative roots: remaining matrices

The dependence on **g** has been highlighted in red. The symbols \mathfrak{K}^{\pm}_{i} \dot{i} are shorthand notations for the Drinfeld polynomials

> \mathfrak{K}^\pm_i \dot{i} $(\lambda) = \log \mathfrak{H}_i^{\pm}$ i $(\lambda),$

$$
E_{i,j}, i < j-1,
$$
 $E_{i,j}, i-1 > j$

Quantum Double

- \blacktriangleright Algebraically, R-matrix is the canonical element of the Hopf Algebra tensored with its dual (similar to a Casimir)
- Classical analogy: Lie algebra $\mathfrak g$ with generators $[\mathfrak J^a,\mathfrak J^b]=f_c^{ab}\mathfrak J^c$ extends to loop algebra (Kac-Moody algebra without central charge) $\mathfrak{g}[\lambda, \lambda^{-1}]$ with generators \hat{J}_n^a $\{a_n^a,\mathfrak{J}_m^b\} = f_c^{ab}\mathfrak{J}_{n+m}^c$, i.e. \mathfrak{J}_n^a $\mathbf{a}_n^a = \lambda^n \mathfrak{J}^a$. Then Killing form $\kappa^{ab} \propto str(\mathfrak{J}^a, \mathfrak{J}^b)$ is extended by (\mathfrak{J}_n^a) $\hat{u}_n^a, \mathfrak{J}_m^b$ = $\kappa^{ab}\delta_{n,-m-1}$. This form splits $\mathfrak{g}[\lambda, \lambda^{-1}] = \mathfrak{g}[\lambda] + \lambda^{-1} \mathfrak{g}[\lambda^{-1}]$ into positive and negative degrees.

The case of $\mathfrak{gl}(n|m)$, $n \neq m$

 \blacktriangleright The q-Cartan matrix for the distinguished Dynkin diagram is given by

Its inverse $\left(A^{\mathfrak{gl}(n|m)}(q)\right)$ $\bigwedge -1$ is given by

 $\int a_{n+m-1,1}$ upper elements are $\overline{}$ obtained by $a_{m+1,1} \quad \ldots \quad a_{m+1,n-1} \quad \ldots \qquad \ldots \qquad \ldots \qquad i \leftrightarrow j$ $b_{m,1}$ $\ldots \qquad \ldots \qquad b_{m,n} \qquad \ldots \qquad \ldots \qquad \ldots$... \cdots ... \vdots $c_{m-1,n+1}$ $b_{2,1}$ $b_{2,2}$ $b_{1,1}$ $b_{1,2}$... $b_{1,n}$ $c_{1,n+1}$... $c_{1,n+m-1}$ with

In the case $n = m$ the Cartan matrix is singular and need to be extended to

$$
r=\sum_{n=0}^\infty \kappa_{ab}\mathfrak{J}_n^a\otimes \mathfrak{J}_{-n-1}^b
$$

 \blacktriangleright The corresponding inverse matrix $\int A^{\mathfrak{gl}(n|n)}(q)$ $\bigg\}$ ⁻¹ has a similar structure to the $\mathfrak{gl}(n|m)$ case, with the exception that the the last row and column are distinguished

or, in terms of generating function for the Cartan part,

$$
\left(\mathfrak{H}_{i}^{+}(\lambda), \mathfrak{H}_{j}^{-}(\tilde{\lambda})\right) = \frac{\lambda - \tilde{\lambda} + \frac{A_{ij}}{2}}{\lambda - \tilde{\lambda} - \frac{A_{ij}}{2}}
$$

 \triangleright For explicit form of R-matrix one needs to diagonalise this form.

R-matrix

 \triangleright For a simple Lie superalgebra $\mathfrak g$ with symmetrized Cartan matrix $A^{\mathfrak{g}}$ we define its quantum counterpart by

$$
A^{\mathfrak{g}}_{ij} \rightarrow A^{\mathfrak{g}}_{ij}(q) := \left[A^{\mathfrak{g}}_{ij}\right]_q
$$

.

Plugging these expressions into \mathcal{R}_H we get, for $\mathfrak{gl}(n|m), n \neq m$, Gamma functions. The final answer is given by

where P is the graded $(n+m)^2 \times (n+m)^2$ dimensional permutation operator and

$$
\mathcal{R}_{+} = \prod_{\alpha \in \Xi^{+}} \exp(-(-1)^{\theta(\alpha)} a(\alpha) \mathfrak{E}_{\alpha}^{+} \otimes \mathfrak{E}_{\alpha}^{-}),
$$

$$
\mathcal{R}_{-} = \prod_{\alpha \in \Xi^{+}} \exp(-(-1)^{\theta(\alpha)} a(\alpha) \mathfrak{E}_{\alpha}^{-} \otimes \mathfrak{E}_{\alpha}^{+}),
$$

- Explicit construction of universal R-matrix is elaborated. En route an explicit form of inverse Cartan matrix for $\mathfrak{gl}(n|m)$ algebra is obtained. \triangleright R-matrix is explicitly computed in evaluation representation of $DY(\mathfrak{gl}(n|m))$. The computation is in agreement with known fundamental R-matrices.
- \triangleright Construction works also in case of $\mathfrak{osp}(n|m)$, but representation theory is more difficult as there are no evaluation representations.

$$
\prod_{n=0}^{\infty} \exp \left(\left(\mathfrak{K}_{i,+}'(\lambda) \right)_m \otimes \left(C^{\mathfrak{g}}_{i,j}(T^{1/2}) \mathfrak{K}_{j,-}(\tilde \lambda + \ell^{\mathfrak{g}} \, (n+1)) \right)_{m+1} \right)
$$

where

$$
\mathfrak{H}^+_i(\lambda)=1+\sum_{n=0}^\infty \mathfrak{H}_{i,n}\lambda^{-n-1},\quad \mathfrak{H}^-_i(\lambda)=1-\sum_{n=-1}^{-\infty} \mathfrak{H}_{i,n}\lambda^{-n-1}.
$$

$$
A^{\mathfrak{gl}(n|m)}(q) = \begin{pmatrix} [2]_q & -1 & 0 & \dots & \dots & \dots & \dots & \dots \\ -1 & [2]_q & -1 & 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & -1 & 0 & \dots & \dots & \dots & \dots \\ \vdots & \dots & -1 & [2]_q & -1 & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & -1 & 0 & 1 & 0 & \dots & \dots \\ \vdots & \dots & \dots & \dots & 1 & -[2]_q & 1 & 0 & \dots \\ \vdots & \dots & \dots & \dots & \vdots & \dots & \dots & \dots & 1 \\ \vdots & \dots & \dots & \dots & \vdots & \dots & \dots & \dots & 1 \\ \vdots & \dots & \dots & \dots & \dots & \dots & \dots & 1 & -[2]_q \end{pmatrix}
$$

$$
a_{i,j} = -\frac{[2m-i]_q[j]_q}{[n-m]_q},
$$

$$
[i]_q[j]_q
$$

 $u - \tilde{u}$ $u-\tilde{u}$

 \blacktriangleright The Cartan part consists of the generating functions

The case of $\mathfrak{gl}(n|n)$

$$
A^{\mathfrak{gl}(n|n)}(q) = \begin{pmatrix} [2]_q & -1 & 0 & \dots & \dots & \dots & \dots & \dots & 0 \\ -1 & [2]_q & -1 & 0 & \dots & \dots & \dots & \dots & \vdots \\ 0 & \dots & -1 & 0 & \dots & \dots & \dots & \dots & 0 \\ \vdots & \dots & -1 & [2]_q & -1 & \dots & \dots & \dots & 0 & 1 \\ 0 & \dots & 0 & -1 & 0 & 1 & 0 & \dots & \dots & 1 \\ \vdots & \dots & \dots & \dots & 1 & -[2]_q & 1 & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \vdots & \dots & \dots & \dots & 1 & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 & \dots & \dots & 0 & \lambda \end{pmatrix}
$$

The four parts of the matrix are defined as follows:

$$
d_{0,j} = \begin{cases} \frac{[n]_q}{[n]_q}, & 1 \le j \le n \\ \frac{[2n-j]_q}{[n]_q}, & n < j \le 2n \end{cases}
$$

Evaluating the R-matrix

 \blacktriangleright Fundamental representation of Yangian:

$$
\mathfrak{H}_{i,k} = u_i^k \mathfrak{H}_{i,0}, \quad \mathfrak{E}_{i,k}^\pm = u_i^k \mathfrak{E}_{i,0}^\pm,
$$

 \blacktriangleright The shifted spectral parameters are defined as follow

$$
1 \le i \le n: \quad u_i = u + \frac{i}{2},
$$

$$
n \le i < n + m: \quad u_i = u + \frac{2n - i}{2}
$$

 \blacktriangleright Evaluate the universal R-matrix on the fundamental representation $\text{The } \mathcal{R}_+$ and \mathcal{R}_- parts read

$$
\mathcal{R}_{+} = \prod_{k=1,\dots} \frac{\overrightarrow{m}}{(n+m)(n+m-1)} \exp(-\sum_{n=0}^{\infty} \mathfrak{E}_{\alpha_k, n}^{+} \otimes \mathfrak{E}_{\alpha_k, -n-1}^{-}),
$$

$$
\mathcal{R}_{-} = \prod_{k=\frac{(n+m)(n+m-1)}{2}, \dots, 1} \exp(-\sum_{n=0}^{\infty} \mathfrak{E}_{\alpha_k, n}^{-} \otimes \mathfrak{E}_{\alpha_k, -n-1}^{+})
$$

 \triangleright Due to the nilpotence of the factors, this simplifies to

$$
\begin{aligned} \exp(-\sum_{n=0}^{\infty}\mathfrak{E}^+_{\alpha_k,n}\otimes\mathfrak{E}^-_{\alpha_k,-n-1})&=\exp(-\sum_{n=0}^{\infty}u^n_i\mathfrak{E}^+_{\alpha_k,0}\otimes\tilde{u}^{-n-1}_i\mathfrak{E}^-_{\alpha_k,0}),\\ &=\exp(\frac{1}{u-\tilde{u}}\mathfrak{E}^+_{\alpha_k,0}\otimes\mathfrak{E}^-_{\alpha_k,0})=1+\frac{1}{u-\tilde{u}}\mathfrak{E}^+_{\alpha_k,0}\otimes\mathfrak{E}^-_{\alpha_k,0} \end{aligned}
$$

$$
\mathfrak{H}_{i,+}(\lambda) = 1 + \frac{1}{\lambda - u_i} \mathfrak{H}_i,
$$
\n
$$
\mathfrak{H}_{i,-}(\mu) = 1 - \frac{1}{\tilde{u}_i - \tilde{\lambda}} \mathfrak{H}_i.
$$
\n
$$
\mathfrak{K}_{i,+}(\lambda)' = \log \mathfrak{H}_{i,+}(\lambda)' = \frac{1}{\lambda - u_i - \mathfrak{H}_i} - \frac{1}{\lambda - u_i}
$$
\n
$$
= \sum_{n=0}^{\infty} \lambda^{-n-1} \left((u_i - \mathfrak{H}_i)^n - u_i^n \right),
$$
\n
$$
\mathfrak{K}_{i,-}(\tilde{\lambda}) = \log \mathfrak{H}_{i,-}(\tilde{\lambda}) = \log \frac{u_i - \mathfrak{H}_i \frac{\tilde{\lambda}}{u_i - \mathfrak{H}_i} - 1}{u_i - \frac{\tilde{\lambda}}{u_i} - 1} =
$$
\n
$$
\log \frac{u_i - \mathfrak{H}_i}{u_i} + \sum_{n=1}^{\infty} \frac{\left((\frac{\tilde{\lambda}}{u_i})^n - (\frac{\tilde{\lambda}}{u_i - \mathfrak{H}_i})^n \right)}{n}
$$

$$
R = R_0(\frac{u - \tilde{u}}{u - \tilde{u} + 1} + \frac{1}{u - \tilde{u} + 1}\mathcal{P}),
$$

For
$$
\mathfrak{gl}(n|n)
$$
 we get $R_0 = \frac{u - u + \frac{1}{2}}{u - \tilde{u} - \frac{1}{2}}$

Conclusions and Outlook

References

1. S. M. Khoroshkin and V. N. Tolstoi, "Yangian Double And Rational R-Matrix", arXiv:hep-th/9406194 2. V. Stukopin "Quantum Double of Yangian of Lie Superalgebra $A(m, n)$ and computation of Universal R-matrix", arXiv:math/0504302

Theory Group - Physics Department - Imperial College London - UK | a.rej@imperial.ac.uk, fabian.spill@imperial.ac.uk | koroteev@physics.umn.edu

 \setminus

 $\overline{}$