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We solve explicitly the crossing equation under sufficiently general
assumptions on the structure of the dressing phase. We obtain the BES/BHL
dressing phase as a minimal solution of the crossing equation.

http://arxiv.org/abs/0904.4929
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Jukowsky map:

We also use notation:



Crossing equation relates 
dressing factor and its 
analytic continuation.

• For the case of the dressing phase in the physical theory we 
take the definition of the branch cut such that  |x|>1

Crossing equation:



• Decomposition in terms of Â:

- Comes from decomposition in terms of charges

• Â is analytic for |x|>1 (minimality condition).

• Â as a function of u does not have branch points except those
that are explicitly required by the crossing equation. The
required branch points are of the square root type. This is a
condition of compatibility of the analytical structure of the
dressing phase and analytical structure of the Bethe equations.
It can be compared with demand for the S-matrix in relativistic
theories to be meroporphic function of µ.

We will use additional functions

Assumptions on the structure of the dressing 
phase::



Passing to the point B:

Tricky point with the crossing equation:
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The function Â[x,y] may have branch points inside the unit
circle. Therefore the analytic continuation via the contour
AA* may bring Â[x+,y] and Â[x-,y] (and it does actually) to
different sheets. Dealing with the functions on the different
sheets is not easy.

Simplification:  analytically continue the equation to the point B.



Solution:

• Since at the point B the functions Â[x+,y] and Â[x-,y] are on the 
same sheet, one can write

• We introduce shift operator and a shorthand notation:

• In this notation crossing equation is written as:

• And is solved by:

The solution was chosen to satisfy the demand that  ¾[u,v]  has at 
most square root branch points 



Further simplification leads to

Obtained Riemann-Hilbert problem is solved by

This is a BES/BHL dressing phase



Important properties of the kernel K:

A nice way to write interaction  terms in Bethe equations:



Relation to the mirror theory:

It is useful to introduce the “mirror” kernel, which is defined by 
choosing a complementary contour of integration

Relation between mirror and physical kernels is the following. Let us fix 
Im[u]>0. Then

if F has singularities only in the lower half plane.

if F has singularities only in the upper half plane

These properties allow us to establish a simple relation between 
physical and mirror dressing phases:

If we put everywhere           instead of      , we will get expressions for 
the mirror theory. 



For Im[u]>0 and Im[v]>0 we have

or

[these relations appeared in works 
by and Gromov, Kazakov, Vieira  and 
Arutyunov,Frolov]



Analytical properties of the dressing phase:

One can use the following formula to read analytical properties

Analytical structure of ¾2

Analytical structure of ¾2,mirr


