Conformal Models in Discrete Differential Geometry

Alexander Bobenko

Technische Universität Berlin

Conference "Integrability in Gauge and String Theory"

MPI für Gravitationsphysik, AEI, Potsdam-Golm, July 3, 2009

DFG Research Unit "Polyhedral Surfaces"

- **Aim:** Development of discrete equivalents of the geometric notions and methods of differential geometry. The latter appears then as a limit of refinements of the discretization.
- ▶ **Question:** Which discretization is the best one?
- **Main messages:**
	- \triangleright Discretize the whole theory, not just the equations. The discrete geometric theory is as rich as the analogous theory for the smooth problem.
	- \triangleright Differential geometry from incidence theorems of projective geometry
	- \blacktriangleright Existence theorems of classical theory can be made constructive when the discretization is proper
	- \blacktriangleright Important for applications: computer graphics, architecture
	- \blacktriangleright Same models in physics
- \triangleright circle packings and circle patterns
- \blacktriangleright integrable circle patterns
- \triangleright conformal equivalent simplicial metrics
- \blacktriangleright and hyperbolic geometry, ...

Circle Patterns as Discrete Complex Analysis

Circle packings - discrete analogs of conformal maps [Thurston '85]

Conformal maps can be discretized as orthogonal circle patterns [Schramm '97] $f: \mathbb{C} \to \mathbb{C}$ is a conformal map if $f_x \perp f_y$ and $|f_x| = |f_y|$

Circle Packings

A circle packing is a configuration of circular disks (of different sizes) that may touch but not overlap.

Connect the centers of touching circles by lines to obtain the contact graph. Let the contact graph be a triangulation.

Let $D \subseteq \mathbb{C}$ be open, connected and simply connected. Then there exists a conformal map *f* that maps *D* onto the unit disk.

The map *f* is unique up to post composition with Möbius transformations $z \mapsto \frac{az+b}{cz+d}$ that map the unit disc onto itself.

Discrete Riemann mapping

- Intimum Thurston's idea [\sim '85]: The Riemann mapping can be approximated using circle packings.
- \triangleright the circle packing is unique up to a Möbius transformation that map the unit disc onto itself.
- ▶ Rodin & Sullivan ['87]: Proof of convergence.

Image by Ken Stephenson

Generalization: circle patterns

- \triangleright A Delaunay decomposition of a surface is a cell decomposition such that the faces are polygons inscribed in circles and these circles contain no vertices in their interior.
- circle pattern

Orthogonal circle patterns

A pair of (orthogonal) circle packings such that

- \triangleright The contact graphs of two circle packings are dual cell decompositions.
- \triangleright The circles intersect orthogonally in their common touching points.
- In the case of a triangulation, the second packing exists automatically.

Orthogonal circle patterns

Theorem. [Andreev, Thurston, Schramm]

To every polytopal (strongly regular) cell decomposition of the sphere, there corresponds Möbius-uniquely a pair of orthogonally intersecting circle packings.

 \triangleright strongly regular = no identifications on the boundary of the cells, and the boundaries of two cells may intersect at only one cell

Koebe polyhedra

Theorem. [Andreev, Thurston, Schramm]

For every combinatorial type of convex polyhedra there exists a unique (up to a Möbius freedom) representative with edges tangent to the unit sphere.

 \triangleright strongly regular = combinatorial types of convex polyhedra [Steinitz '22]

A discrete conformal map is a pair of circle patterns with the same combinatorics and intersection angles.

- \triangleright At the centers: Length distortion does not depend on direction.
- \triangleright At the intersection points: angles are preserved.

Circle pattern problem

Given

- \triangleright a cell decomposition of a surface (combinatorially)
- ightharpoontangle $0 < \theta < \pi$ for each interior edge

Find a corresponding Delaunay decomposition with circles intersecting at the prescribed angles.

Analytic description of circle patterns

Given: intersection angles θ_e

Variables: one radius *r^f* per face *f*.

Equations: one closure condition per face

$$
\sum_{\vec{\ell}\downarrow}2\varphi_{\vec{e}}=2\pi
$$

where

$$
\varphi_{\vec{e}} = \frac{1}{2i} \log \frac{r_{f_j} - r_{f_k} e^{-i\theta_{\vec{e}}}}{r_{f_j} - r_{f_k} e^{i\theta_{\vec{e}}}}.
$$

Variational principle [Bobenko, Springborn '04]

Logarithmic radii: $\rho = \log r$

Circle pattern functional:

$$
S(\rho) = \sum_{f_j \circ \int_0^{\pi} \sigma f_k} \left(\text{Im Li}_2 \left(e^{\rho_{f_k} - \rho_{f_j} + i\theta_e} \right) + \text{Im Li}_2 \left(e^{\rho_{f_j} - \rho_{f_k} + i\theta_e} \right) - \left(\pi - \theta_e \right) \left(\rho_{f_j} + \rho_{f_k} \right) \right) + 2\pi \sum_{\sigma f} \rho_f
$$
\nDilogarithm:

\n
$$
\text{Li}_2(z) = \sum_{1}^{\infty} \frac{z^n}{n^2} = -\int_0^z \frac{\log(1 - \zeta)}{\zeta} d\zeta
$$
\nPartial derivatives:

\n
$$
\frac{\partial S}{\partial \rho_f} = -\sum_{f \circ \int_0^z \sigma f_k} 2\varphi_{\vec{e}} + 2\pi.
$$

 \bullet

- \triangleright the pattern can be reconstructed if we know the correct radii.
- In The critical points of $S(\rho)$ are the solutions of the closure conditions.
- \blacktriangleright *S*(ρ) is convex!
- In The convexity of $S(\rho)$ implies uniqueness and existence (more tricky) of circle patterns.
- \triangleright Other variational principles for circle packings and patterns (by Colin de Verdière, Brägger, Rivin, Leibon) can be derived from this.
- \blacktriangleright constructive method
- boundary conditions can be implemented

Rhombic quad-graphs

- I Quad-graph = quadrilateral cell decomposition
- Rhombic quad-graph $=$ there exists a rhombic representation in \mathbb{R}^2
- \triangleright combinatorial characterization [Kenyon, Schlenker '04]
	- \triangleright no strip crosses itself or periodic
	- \blacktriangleright strips cross at most once

Rhombic quad-graphs

- I Quad-graph = quadrilateral cell decomposition
- Rhombic quad-graph $=$ there exists a rhombic representation in \mathbb{R}^2
- \triangleright combinatorial characterization [Kenyon, Schlenker '04]
	- \triangleright no strip crosses itself or periodic
	- \blacktriangleright strips cross at most once

Rhombic quad-graphs

- I Quad-graph = quadrilateral cell decomposition
- Rhombic quad-graph $=$ there exists a rhombic representation in \mathbb{R}^2
- \triangleright combinatorial characterization [Kenyon, Schlenker '04]
	- \triangleright no strip crosses itself or periodic
	- \blacktriangleright strips cross at most once

Integrable Circle Patterns

Circle patterns: combinatorial data *G* and intersection angles

 \triangleright Combinatorial data and intersection angles belong to an integrable circle pattern iff they admit an isoradial realization. \Rightarrow rhombic quad-graph, rhombic realization $\alpha_i \in \mathbb{C}$ unitary.

Integrable Circle Patterns

 \blacktriangleright $w(\bullet) \in \mathbb{R}_+$ - radii, $w(\bullet) \in S^1$ - rotation angles

- \blacktriangleright Hirota equation $\alpha_1(WW_1 - W_2W_{12}) = \alpha_2(WW_2 - W_1W_{12})$
- \triangleright Quantization [Faddeev-Volkov '94], [Bazhanov-Mangazeev-Sergeev '08]

Z ^a circle pattern

Conformal maps

- **Example 2** *conformal* means *angle preserving*
- \blacktriangleright infinitesimal lengths scaled by *conformal factor*

 $|df| = e^U |dx|$

independent of direction

 \blacktriangleright in the small like similarity transformations

Smooth theory

Definition

Two Riemannian metrics *g*, *g*~ on a smooth manifold *M* are called *conformally equivalent*, if

$$
\tilde{g}=e^{2u}\,g
$$

for some function $u : M \to \mathbb{R}$

 \blacktriangleright Gaussian curvatures

$$
e^{2u}\tilde{K}=K+\Delta_g u
$$

 \blacktriangleright mapping problem \Leftrightarrow

Given surface (*M*; *g*), find conformally equivalent flat metric *g*~

▶ Poisson problem
$$
\Delta_g u = -K
$$

Discrete

 \triangleright abstract surface triangulation $M = (V, E, T)$

Definition

A *discrete metric* on *M* is a function

 $\ell : E \to \mathbb{R}_{>0}, \quad \ddot{\eta} \mapsto \ell_{\ddot{\eta}}$

satifying all triangle inequalities:

$$
\forall \text{ ijk} \in \mathcal{T}: \qquad \ell_{ij} < \ell_{jk} + \ell_{ki}
$$
\n
$$
\ell_{jk} < \ell_{ki} + \ell_{ij}
$$
\n
$$
\ell_{ki} < \ell_{ij} + \ell_{jk}
$$

Definition

Two discrete metrics ℓ , $\tilde{\ell}$ on *M* are *(discretely) conformally equivalent* if

$$
\tilde{\ell}_{ij} = e^{\frac{1}{2}(u_i + u_j)} \ell_{ij}
$$

for some function $u: V \to \mathbb{R}$

► use
$$
\lambda_{ij} = 2 \log \ell_{ij}
$$

so $\ell_{ij} = e^{\lambda_{ij}/2}$
and $\tilde{\lambda}_{ij} = \lambda_{ij} + u_i + u_j$

Definition

For interior edges *ij* define *length cross ratio*

$$
\mathsf{Icr}_{ij} = \frac{\ell_{ih} \ell_{jk}}{\ell_{hj} \ell_{ki}}
$$

 ℓ , $\tilde{\ell}$ discretely conformally equivalent $\mathbb{\hat{I}}$ lcr f*ij* = lcr*ij*

 \blacktriangleright \forall interior vertices *i*:

$$
\prod_{ij \ni i} \mathsf{lcr}_{ij} = 1
$$

I *discrete conformal structure* on *M*: equivalence class of discrete metrics

▶ *M* closed, compact, genus *g*:

 $dim{$ conformal structures $}$

$$
= |E| - |V| = 6g - 6 + 2|V|
$$

 $=$ dim $\mathcal{T}_{g,|V|}$

 $\mathcal{T}_{q,n}$: Teichmüller space for genus *g* with *n* punctures

Möbius invariance

- \blacktriangleright immersion $V \to \mathbb{R}^n, i \mapsto V_i$ induces discrete metric $\ell_{ii} = ||\mathbf{v}_i - \mathbf{v}_i||$
- \blacktriangleright Möbius transformation: composition of inversions on spheres
- \blacktriangleright the only conformal transformations in \mathbb{R}^n if $n \geq 3$

Möbius equivalent immersions induce conformally equivalent discrete metrics

Angles and curvatures

 \blacktriangleright lengths determine angles

$$
\alpha_{jk}^i = 2 \tan^{-1} \sqrt{\frac{(-\ell_{ij} + \ell_{jk} + \ell_{ki})(\ell_{ij} + \ell_{jk} - \ell_{ki})}{(\ell_{ij} - \ell_{jk} + \ell_{ki})(\ell_{ij} + \ell_{jk} + \ell_{ki})}}
$$

▶ angles sum around vertex *i*

$$
\Theta_i = \sum_{ijk \ni i} \alpha_{jk}^i
$$

▶ curvature at interior vertex *i*

$$
K_i=2\pi-\Theta_i
$$

 \blacktriangleright boundary curvature at boundary vertex

$$
\kappa_i = \pi - \Theta_i
$$

$$
\begin{array}{c}\n\ell_{ki} \\
\hline\n\ell_{jk} \\
\ell_{ij}\n\end{array}
$$

Discrete mapping problem

Given mesh *M*, metric $\ell_{ij} = \bm{e}^{\frac{1}{2}\lambda_{ij}},$ and desired angle sums Θ_i

Find conformally equivalent metric $\tilde{\ell}_{ij}$ with

$$
\widetilde{\Theta}_i = \widehat{\Theta}_i
$$

- $\blacktriangleright \Theta_i = 2\pi$ for interior vertices (except for cone-like singulatrities)
- \triangleright non-linear equations for u_i

Variational principle [Springborn et al. '08]

$$
\triangleright S(u) \stackrel{\text{def}}{=} \sum_{ijk \in T} \left(\tilde{\alpha}_{ij}^k \tilde{\lambda}_{ij} + \tilde{\alpha}_{jk}^i \tilde{\lambda}_{jk} + \tilde{\alpha}_{ki}^j \tilde{\lambda}_{ki} - \pi (u_i + u_j + u_k) \right. \\ \left. + 2 \pi \left(\tilde{\alpha}_{ij}^k \right) + 2 \pi \left(\tilde{\alpha}_{jk}^j \right) + 2 \pi \left(\tilde{\alpha}_{ki}^j \right) \right) + \sum_{i \in V} \hat{\Theta}_i u_i
$$

 \triangleright Milnor's Lobachevsky function

ia do 20 m

 $\frac{\partial}{\partial u_i} = \Theta_i - \Theta_i$

$$
\Pi(\alpha)=-\int_0^\alpha \log |2\sin t| \ dt
$$

$$
\overbrace{}^{\hspace{-0.1em} \textbf{A}}
$$

$$
\tilde{\ell}_{ij} = e^{\frac{1}{2}(\lambda_{ij} + u_i + u_j)}
$$
 solves mapping problem

$$
\updownarrow
$$

$$
u = (u_1, \dots, u_n)
$$
 is critical point of $S(u)$

Convexity [Springborn et al. '08]

$$
\triangleright S(u) = \sum_{ijk \in \mathcal{T}} \big(2f(\frac{\tilde{\lambda}_{ji}}{2}, \frac{\tilde{\lambda}_{jk}}{2}, \frac{\tilde{\lambda}_{ki}}{2}) - \pi(u_i + u_j + u_k)\big) + \sum_{i \in V} \widehat{\Theta}_i u_i
$$

$$
f(x_1, x_2, x_3) = \alpha_1 x_1 + \alpha_2 x_3 + \alpha_3 x_3
$$

+ $\Pi(\alpha_1) + \Pi(\alpha_2) + \Pi(\alpha_3)$

- \triangleright *S(u)* strictly convex !
- domain not convex (due to triangle inequalities)
- \triangleright solution is unique (if it exists)
- \triangleright one finds it by minimizing $S(u)$

- \triangleright circumcircle induces hyperbolic metric (Klein model)
- \triangleright \rightarrow hyperbolic metric on surface
- \triangleright vertices at infinity (cusps)
- \triangleright conformally equivalent discrete metrics induce same hyperbolic metric
- ightharpoonright no wonder about dim $\mathcal{T}_{q,n}$
- \blacktriangleright log lcr_{ij} = Thurston Fock shear coordinates λ_{ii} = Penner coordinates

- \triangleright circumcircle induces hyperbolic metric (Klein model)
- \triangleright \rightarrow hyperbolic metric on surface
- \triangleright vertices at infinity (cusps)
- \triangleright conformally equivalent discrete metrics induce same hyperbolic metric
- ightharpoonright no wonder about dim $\mathcal{T}_{q,n}$
- \blacktriangleright log lcr_{ij} = Thurston Fock shear coordinates λ_{ii} = Penner coordinates

- \triangleright circumcircle induces hyperbolic metric (Klein model)
- \triangleright \rightarrow hyperbolic metric on surface
- \triangleright vertices at infinity (cusps)
- \triangleright conformally equivalent discrete metrics induce same hyperbolic metric
- ightharpoonright no wonder about dim $\mathcal{T}_{q,n}$
- \blacktriangleright log lcr_{ij} = Thurston Fock shear coordinates λ_{ii} = Penner coordinates

- \triangleright circumcircle induces hyperbolic metric (Klein model)
- \triangleright \rightarrow hyperbolic metric on surface
- \triangleright vertices at infinity (cusps)
- \triangleright conformally equivalent discrete metrics induce same hyperbolic metric
- ightharpoonright no wonder about dim $\mathcal{T}_{q,n}$
- \blacktriangleright log lcr_{ij} = Thurston Fock shear coordinates λ_{ii} = Penner coordinates

- \triangleright circumcircle induces hyperbolic metric (Klein model)
- \triangleright \rightarrow hyperbolic metric on surface
- \triangleright vertices at infinity (cusps)
- \triangleright conformally equivalent discrete metrics induce same hyperbolic metric
- ightharpoonright no wonder about dim $\mathcal{T}_{q,n}$
- \blacktriangleright log lcr_{ij} = Thurston Fock shear coordinates λ_{ii} = Penner coordinates

Alexander Bobenko [Conformal Models in DDG](#page-0-0)

Alexander Bobenko [Conformal Models in DDG](#page-0-0)

- similar theory with finite hyperbolic triangles
- **•** hyperbolic angles, $\sum \alpha_{jk}^i = 2\pi$ at interior vertex
- convex functional
- ighthromorporportation of surfaces of genus > 1 .

- similar theory with finite hyperbolic triangles
- **•** hyperbolic angles, $\sum \alpha_{jk}^i = 2\pi$ at interior vertex
- I convex functional
- ighthromorporportation of surfaces of genus > 1 .

- \triangleright similar theory with finite hyperbolic triangles
- **•** hyperbolic angles, $\sum \alpha_{jk}^i = 2\pi$ at interior vertex
- convex functional
- ighthromorporportances of genus > 1 .

- \triangleright similar theory with finite hyperbolic triangles
- **•** hyperbolic angles, $\sum \alpha_{jk}^i = 2\pi$ at interior vertex
- convex functional
- ighthromorporportances of genus > 1 .

- \triangleright similar theory with finite hyperbolic triangles
- **•** hyperbolic angles, $\sum \alpha_{jk}^i = 2\pi$ at interior vertex
- convex functional
- ighthromorporportances of genus > 1 .

- \triangleright A.I. Bobenko, B.A. Springborn, Variational principles for circle patterns and Koebe's theorem, Trans. AMS 356 (2004) 659-689
- ▶ A.I. Bobenko, Ch. Mercat, Yu.B. Suris, Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green's function, J. reine und angew. Math. 583 (2005) 117-161
- ▶ B. Springborn, P. Schröder, U. Pinkall. Conformal equivalence of triangle meshes. ACM Transactions on Graphics 27:3 [SIGGRAPH 2008]
- ▶ A.I. Bobenko, U. Pinkall, B. Springborn, Discrete conformal equivalence and ideal hyperbolic polyhedra. (in preparation)

Alexander Bobenko [Conformal Models in DDG](#page-0-0)