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Discrete Differential Geometry

I Aim: Development of discrete equivalents of the geometric
notions and methods of differential geometry. The latter
appears then as a limit of refinements of the discretization.

I Question: Which discretization is the best one?
I Main messages:

I Discretize the whole theory, not just the equations. The
discrete geometric theory is as rich as the analogous
theory for the smooth problem.

I Differential geometry from incidence theorems of projective
geometry

I Existence theorems of classical theory can be made
constructive when the discretization is proper

I Important for applications: computer graphics, architecture
I Same models in physics
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Conformal Models in DDG

I circle packings and circle patterns
I integrable circle patterns
I conformal equivalent simplicial metrics
I and hyperbolic geometry, ...
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Circle Patterns as Discrete Complex Analysis

Circle packings - discrete analogs of conformal maps [Thurston
’85]

Conformal maps can be discretized as orthogonal circle
patterns [Schramm ’97]
f : C! C is a conformal map if fx ? fy and jfx j = jfy j
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Circle Packings

A circle packing is a configuration of circular disks (of different
sizes) that may touch but not overlap.
Connect the centers of touching circles by lines to obtain the
contact graph. Let the contact graph be a triangulation.
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Riemann mapping theorem

Let D ( C be open, connected and simply connected.
Then there exists a conformal map f that maps D onto the unit
disk.
The map f is unique up to post composition with Möbius
transformations z 7! az+b

cz+d that map the unit disc onto itself.
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Discrete Riemann mapping

I Thurston’s idea [~’85]: The Riemann mapping can be
approximated using circle packings.

I the circle packing is unique up to a Möbius transformation
that map the unit disc onto itself.

I Rodin & Sullivan [’87]: Proof of convergence.

Image by Ken Stephenson
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Generalization: circle patterns

I A Delaunay decomposition of a surface is a cell
decomposition such that the faces are polygons inscribed
in circles and these circles contain no vertices in their
interior.

I circle pattern
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Orthogonal circle patterns

A pair of (orthogonal) circle packings such that
I The contact graphs of two circle packings are dual cell

decompositions.
I The circles intersect orthogonally in their common touching

points.
I In the case of a triangulation, the second packing exists

automatically.
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Orthogonal circle patterns

Theorem. [Andreev, Thurston, Schramm]
To every polytopal (strongly regular) cell decomposition of the
sphere, there corresponds Möbius-uniquely a pair of
orthogonally intersecting circle packings.

I strongly regular = no identifications on the boundary of the
cells, and the boundaries of two cells may intersect at only
one cell
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Koebe polyhedra

Theorem. [Andreev, Thurston, Schramm]
For every combinatorial type of convex polyhedra there exists a
unique (up to a Möbius freedom) representative with edges
tangent to the unit sphere.

I strongly regular = combinatorial types of convex polyhedra
[Steinitz ’22]
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Discrete conformal maps

A discrete conformal map is a pair of circle patterns with the
same combinatorics and intersection angles.

I At the centers: Length distortion does not depend on
direction.

I At the intersection points: angles are preserved.
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Circle pattern problem

Given
I a cell decomposition of a surface (combinatorially)
I an intersection angle 0 < � < � for each interior edge

Find a corresponding Delaunay decomposition with circles
intersecting at the prescribed angles.

�

��

� + �� = �
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Analytic description of circle patterns

Given:
intersection angles �e

Variables:
one radius rf per face f .

Equations:
one closure condition per
face

fk

rfk

fj

rfj

'
�~e

�e

~e'
~e

X
2'~e = 2�

where

'~e =
1
2i

log
rfj � rfk e�i�e

rfj � rfk ei�e
:
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Variational principle [Bobenko, Springborn ’04]

Logarithmic radii: � = log r

Circle pattern functional:
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Convexity

I the pattern can be reconstructed if we know the correct
radii.

I The critical points of S(�) are the solutions of the closure
conditions.

I S(�) is convex!
I The convexity of S(�) implies uniqueness and existence

(more tricky) of circle patterns.
I Other variational principles for circle packings and patterns

(by Colin de Verdière, Brägger, Rivin, Leibon) can be
derived from this.

I constructive method
I boundary conditions can be implemented
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Rhombic quad-graphs

I Quad-graph = quadrilateral cell decomposition
I Rhombic quad-graph = there exists a rhombic

representation in R2

I combinatorial characterization [Kenyon, Schlenker ’04]
I no strip crosses itself or periodic
I strips cross at most once
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Integrable Circle Patterns

Circle patterns: combinatorial data G and intersection angles

I Combinatorial data and intersection angles belong to an
integrable circle pattern iff they admit an isoradial
realization. ) rhombic quad-graph, rhombic realization
�i 2 C unitary.
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Integrable Circle Patterns

w2

w w12

�2

w1

�1

�1
�2

I w(�) 2 R+ - radii, w(�) 2 S1 - rotation angles
I Hirota equation

�1(ww1 � w2w12) = �2(ww2 � w1w12)

I Quantization
[Faddeev-Volkov ’94],
[Bazhanov-Mangazeev-Sergeev ’08]
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Z a circle pattern
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Conformal maps

I conformal means angle
preserving

I infinitesimal lengths scaled by
conformal factor

jdf j = eu jdx j

independent of direction

I in the small like similarity
transformations

I Problem:
surface in space

conformally
�������! plane
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Smooth theory
Definition
Two Riemannian metrics g, ~g on a smooth manifold M are called
conformally equivalent, if

~g = e2u g

for some function u : M ! R

I Gaussian curvatures

e2u ~K = K +�gu

I mapping problem ,

Given surface (M;g), find conformally equivalent flat metric ~g

I Poisson problem �gu = �K
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Discrete

I abstract surface triangulation
M = (V ;E ;T )

Definition
A discrete metric on M is a function

` : E ! R>0; ij 7! `ij

satifying all triangle inequalities:

8 ijk 2 T : `ij < `jk + `ki

`jk < `ki + `ij

`ki < `ij + `jk
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Discrete

Definition

Two discrete metrics `, ~̀on M are
(discretely) conformally equivalent if

~̀ij = e
1
2 (ui+uj )`ij

for some function u : V ! R

I use �ij = 2 log `ij

so `ij = e�ij=2

and ~�ij = �ij + ui + uj
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Length cross ratio

Definition
For interior edges ij define
length cross ratio

lcrij =
`ih `jk

`hj `ki

`, ~̀discretely conformally equivalent
mflcrij = lcrij
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Teichmüller space

I 8 interior vertices i :Y
ij3i

lcrij = 1

I discrete conformal structure on
M:
equivalence class of discrete
metrics

I M closed, compact, genus g:

dimfconformal structuresg
= jE j � jV j = 6g � 6 + 2jV j
= dim Tg;jV j

Tg;n: Teichmüller space for genus g with n punctures
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Möbius invariance

I immersion V ! Rn; i 7! vi
induces discrete metric
`ij = kvi � vjk

I Möbius transformation:
composition of inversions on
spheres

I the only conformal
transformations
in Rn if n � 3

Möbius equivalent immersions induce
conformally equivalent discrete met-
rics
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Angles and curvatures

I lengths determine angles

�i
jk = 2 tan�1

r
(�`ij+`jk+`ki )(`ij+`jk�`ki )

(`ij�`jk+`ki )(`ij+`jk+`ki )

I angles sum around vertex i

�i =
X
ijk3i

�i
jk

I curvature at interior vertex i

Ki = 2� ��i

I boundary curvature at boundary
vertex

�i = � ��i

ji
�

i
jk

k

`ij

`ki
`jk
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Mapping problem

Discrete mapping problem

Given mesh M, metric `ij = e
1
2�ij , and

desired angle sums b�i

Find conformally equivalent metric ~̀ij
with e�i = b�i

I b�i = 2� for interior vertices
(except for cone-like
singulatrities)

I non-linear equations for ui
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Variational principle [Springborn et al. ’08]

I S(u) def
=
X
ijk2T

�
~�k

ij
~�ij + ~�i

jk
~�jk + ~�

j
ki
~�ki � �(ui + uj + uk )

+2L(~�k
ij ) + 2L(~�i

jk ) + 2L(~�j
ki)
�
+
X
i2V

b�iui

I Milnor’s Lobachevsky function

L(�) = �

Z �

0
log j2 sin t jdt

I
@S
@ui

= b�i � e�i

~̀ij = e
1
2 (�ij+ui+uj ) solves mapping problem

m

u = (u1; : : : ;un) is critical point of S(u)
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Convexity [Springborn et al. ’08]

I S(u) =
X
ijk2T

�
2f (

~�ij
2 ;

~�jk
2 ;

~�ki
2 )� �(ui + uj + uk )

�
+
X
i2V

b�iui

I f (x1; x2; x3) = �1 x1 + �2 x3 + �3 x3
+L(�1) +L(�2) +L(�3)

I S(u) strictly convex !

I domain not convex (due to
triangle inequalities)

I solution is unique (if it exists)

I one finds it by minimizing S(u)

1

3

2

�3

�1 �2

a2 = ex2

a3 = ex3

a1 = ex1
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2D hyperbolic geometry

I circumcircle induces hyperbolic
metric
(Klein model)

I ! hyperbolic metric on surface

I vertices at infinity (cusps)

I conformally equivalent discrete
metrics induce same hyperbolic
metric

I no wonder about dim Tg;n

I log lcrij = Thurston Fock shear coordinates
�ij = Penner coordinates
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metric
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I ! hyperbolic metric on surface

I vertices at infinity (cusps)
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metrics induce same hyperbolic
metric

I no wonder about dim Tg;n
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l
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3D hyperbolic geometry. [with Springborn, Pinkall]
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3D hyperbolic geometry. [with Springborn, Pinkall]

3

1

2

�31 �12

�3
�1

�2

`31 `12

`23
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3D hyperbolic geometry. [with Springborn, Pinkall]

3

1

2
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`31 `12

`23
`12 = e

1
2 (�12��1��2)
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3D hyperbolic geometry. [with Springborn, Pinkall]

3

1

2

�31 �12

�3
�1

�2

`31 `12

`23
`12 = e

1
2 (�12+u1+u2)

ui = ��i
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Discrete Uniformization. [with Springborn,
Sechelmann]

I similar theory with finite hyperbolic triangles
I hyperbolic angles,

P
�i

jk = 2� at interior vertex
I convex functional
I uniformization of surfaces of genus > 1.
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