Wall-crossing in N=2 gauge theory and integrability

DG, G.Moore, A.Neitzke: arXiv:0807.4723

DG, G.Moore, A.Neitzke: to appear

Introduction

Wall-crossing phenomena in N=2 field theory

- Why a talk in this workshop?
- Two reasons:
 - We explored SU(2) Hitchin system
 - Related to Sinh-Gordon
 - Applications to gluon scattering Alday, Maldacena
 - At least some methods should generalize
 - We met some TBA-like equations (or Y-system-like)
 - A coincidence? A hidden integrable system?
 - In any case, it should be fun to study or solve those equations
 - We also have fun differential equations. Could they be useful?

Outline

What is wall-crossing

Hyperkahler metrics and TBA-like equations

WKB analysis of SU(2) Hitchin system

N=2 4d gauge theories

N=2 4d gauge theories in the Coulomb branch

- Gauge multiplet has adjoint scalar
 - Expectation value Higgses to U(1)^r
 - r complex scalars u parametrize vacuum
 - r electric charges q_e, r magnetic charges q_{m.}
 - $<q,q'> = q_e q'_m q_m q'_e$
- A BPS bound: M greater or equal to $|Z(q_e, q_m)|$
 - $Z = q_e a(u) + q_m a_D(u)$
 - periods (a,a_D) determine massless Lagrangian

Interesting massive spectrum of BPS particles

• $M = |Z(q_e, q_m)|$

BPS spectrum

- BPS particles sit in reduced SUSY multiplets
- To become non-BPS, they must recombine
- Define a BPS degeneracy $\Omega(q,u)$
 - Naively, it should not vary with u

Exception: walls of marginal stability

- two particle states continuum: $M>M_1 + M_2$
- $q=q_1 + q_2$; $Z(q,u)=Z(q_1,u) + Z(q_2,u)$
- wall defined by $|Z(q,u)| = |Z(q_1,u)| + |Z(q_2,u)|$
 - BPS states can ``decay" to continuum across walls

Wall-crossing

Are BPS spectra on the two sides of wall related?

- Near the wall, states which decay are very ``large" in size
- Effective IR Lagrangian might know about decay

Wall crossing formula

- First attempts: Denef, Moore for two-particle decay
 - $\Delta \Omega(q_1 + q_2) = \langle q_1, q_2 \rangle \Omega(q_1) \Omega(q_2)$
- From related mathematical work, a full proposal
 - Kontsevich- Soibelmann wall crossing formula

KS wall crossing formula

Extremely surprising form

- Consider variables $x_{q, x_{q+q'=}} (-1)^{<q,q'>} x_q x_{q'}$
- KS transformations $K_q: x_p => x_p(1-x_q)^{<q,p>}$
- $\prod K_q^{\Omega(q)}$ in the order of arg Z(q)
- Overall product is unchanged across wall!
 - wall: arg $Z(q_1) = \arg Z(q_2)$
 - Order of arg $Z(q_1)$ and arg $Z(q_2)$ changes at wall
 - K_{q1} and K_{q2} do not commute
 - Change in $\Omega(q)$ follows

Example

Simplest wall:

- One electron, one monopole => electron,monopole,dyon
- $K_{(1,0)}K_{(0,1)} = K_{(0,1)}K_{(1,1)}K_{(1,0)}$
 - $K_{(0,1)}$: $[x_{(0,1)}, x_{(1,0)}] => [x_{(0,1)}, x_{(1,0)}(1-x_{(0,1)})]$
 - $K_{(1,0)}$: $[x_{(0,1)}, x_{(1,0)}] => [x_{(0,1)}/(1-x_{(1,0)}), x_{(1,0)}]$
 - $K_{(1,1)}$: $[x_{(0,1)}, x_{(1,0)}] => [x_{(0,1)}/(1 + x_{(0,1)} x_{(1,0)}), x_{(1,0)}(1 + x_{(0,1)} x_{(1,0)})]$
- A pentagon identity: X_{n-1} X_{n+1}=1-X_n has period five
 More interesting wall
- $K_{(2,-1)}K_{(0,1)} = K_{(0,1)} K_{(2,1)} K_{(4,1)} \dots K_{(2,0)}^{-2} \dots K_{(6,-1)} K_{(4,-1)} K_{(2,-1)}$
 - $X_{n-1} X_{n+1} = (1-X_n)^2$ has no period, but relation \pm^{∞} is $K_{(2,0)}^{-2}$

A circle compactification

Pure U(1) theory on R³ x S¹

- 4d: scalar a, gauge field A_i
 - moduli space: R²
 - $a_D = \tau a$ τ is constant gauge coupling
- 3d: scalars a, $t=A_3$, t_D dual to 3d gauge field
 - moduli space: R² x T²
 - It is (trivially) hyperkahler: S² worth of complex structures
 - complex coordinates in complex structure ζ ?
 - » $X_e = \exp [R/\zeta a + it + R\zeta a^*]$ $x_m = \exp [R/\zeta a_D + it_D + R\zeta a_D^*]$
 - » $R^2 x T^2$ is $C^* x C^*$
 - Special $\zeta = 0, \zeta = \infty$
 - » a and t_D au t are holomorphic,
 - » R² x T² is C x elliptic curve

U(1) plus one massive particle

Loops of particle correct metric

- Correction strong when particle is light
- Correction shrinks t_D circle

4d loops: running coupling constant

- $\tau = \log a/L$
- Singular at a=0, codimension 2

3d loops: instantons from particle around S¹

- 3d masses: a, a*, t
- Codimension 3, and regular! ``periodic Taub-NUT"₁₀

Periodic Taub-NUT

Taub-NUT metric: hyperkahler circle fibration

- flat base space, fibration metric:
 - $ds^2 = V(x) dx^2 + V(x)^{-1} (dt_D + A)^2$
 - V(x) is harmonic.

Periodic Taub-NUT

- R² x S¹ base: a, a*, t
- Single source at a=t=0.
 - Far away, V goes like log |a|/L, au =log a/L
- Regular at a=t=0.

Holomorphic functions

Complex coordinates in complex structure z?

- log x_e = R/ζ a + it + R ζ a*
- log $x_m = R/\zeta a_D + i t_D + R \zeta a_D^* +$

$$\left[\frac{iq}{4\pi}\int_{\ell_{+}}\frac{d\zeta'}{\zeta'}\frac{\zeta'+\zeta}{\zeta'-\zeta}\log[1-\mathcal{X}_{e}(\zeta')^{q}]\right]$$
$$-\frac{iq}{4\pi}\int_{\ell_{-}}\frac{d\zeta'}{\zeta'}\frac{\zeta'+\zeta}{\zeta'-\zeta}\log[1-\mathcal{X}_{e}(\zeta')^{-q}]\right]$$

Note resemblance with TBA equations

Good asymptotics

- x_m picked to satisfy log $x_m = R/\zeta a_D + ...$ at small ζ
- Price: discontinuity
 - clockwise at $R/\zeta a < 0$: $x_m => x_m (1-x_e)$
 - clockwise at R/ ζ a>0: $x_m => x_m (1-x_e^{-1})^{-1}$
- Same as KS factors for particle, antiparticle

General conjecture

If you had electron AND monopole

- log $x_e = R/\zeta a$ +it +R $\zeta a^* k \otimes_m \log (1-x_m) + k \otimes_{-m} \log (1-x_m^{-1})$
- log $x_m = R/\zeta a_D + i t_D + R \zeta a_D^* + k \otimes_e \log (1 x_e) k \otimes_{-e} \log (1 x_e^{-1})$
- \otimes_q is convolution along R/ ζ Z[q]<0

For generic BPS spectrum include all particles

$$\mathcal{X}_{\gamma}(\zeta) = \mathcal{X}_{\gamma}^{\mathrm{sf}}(\zeta) \exp\left[-\frac{1}{4\pi i} \sum_{\gamma'} \Omega(\gamma'; u) \langle \gamma, \gamma' \rangle \int_{\ell_{\gamma'}} \frac{d\zeta'}{\zeta'} \frac{\zeta' + \zeta}{\zeta' - \zeta} \log(1 - \sigma(\gamma') \mathcal{X}_{\gamma'}(\zeta'))\right]$$

General conjecture

Good asymptotics is important!

- log x_q= R/ζ Z[q] +
- Discontinuity $K_q \Omega^{[q]}$ across R/ ζ Z[q]<0
 - Compatible with asymptotics

Recovering the metric

- K_q preserves dlog $x_e \land dlog x_m$
- dlog $x_e \wedge dlog x_m = \omega^+ / \zeta + \omega^3 + \omega^- \zeta$
- hyperkahler forms ω determine metric

Wallcrossing and hyperkahler metrics

Continuous discontinuities

- At Z(q,u)/ ζ <0 discontinuity K_q Ω ^[q]
- As wall is crossed in u, lines merge and exchange
- Overall discontinuity is ordered product of $K_q\,{}^{\Omega[q]}$
- KS product!

Wall crossing formula: product is continuous

- integral equation is continuous
- solutions will be continuous
- metric will be continuous

Differential equation and isomonodromy

$$\begin{aligned} \partial_{u^{j}} \mathcal{X} &= \left(\frac{1}{\zeta} \mathcal{A}_{u^{j}}^{(-1)} + \mathcal{A}_{u^{j}}^{(0)}\right) \mathcal{X}, \\ \partial_{\bar{u}^{\bar{j}}} \mathcal{X} &= \left(\mathcal{A}_{\bar{u}^{\bar{j}}}^{(0)} + \zeta \mathcal{A}_{\bar{u}^{\bar{j}}}^{(1)}\right) \mathcal{X}, \\ \Lambda \partial_{\Lambda} \mathcal{X} &= \left(\frac{1}{\zeta} \mathcal{A}_{\Lambda}^{(-1)} + \mathcal{A}_{\Lambda}^{(0)}\right) \mathcal{X}, \\ \bar{\Lambda} \partial_{\bar{\Lambda}} \mathcal{X} &= \left(\mathcal{A}_{\bar{\Lambda}}^{(0)} + \zeta \mathcal{A}_{\bar{\Lambda}}^{(1)}\right) \mathcal{X}, \\ R \partial_{R} \mathcal{X} &= \left(\frac{1}{\zeta} \mathcal{A}_{R}^{(-1)} + \mathcal{A}_{R}^{(0)} + \zeta \mathcal{A}_{R}^{(1)}\right) \mathcal{X}, \\ \zeta \partial_{\zeta} \mathcal{X} &= \left(\frac{1}{\zeta} \mathcal{A}_{\zeta}^{(-1)} + \mathcal{A}_{\zeta}^{(0)} + \zeta \mathcal{A}_{\zeta}^{(1)}\right) \mathcal{X}. \end{aligned}$$

Compatible differential operators in the angles t,t_D etc.

Hitchin equations

Equations for SU(2) connection A, adjoint (1,0)-form ϕ

- Flat $AA[\zeta] = R/\zeta \phi + A + R \zeta \phi^*$
- Moduli spaces of solutions are hyperkahler
- Monodromy data of AA[ζ] are holomorphic functions at ζ
 - Examples: monodromies along some fixed paths

Monodromy data $M_i[\zeta]$ for fixed ϕ ,A

- interesting function of ζ
 - Can we compute it without solving Hitchin equations?
- The hk metric is easy to compute from $M_i[\zeta]!$

A simplified example

Holomorphic Schroedinger equation

- $[h^2 d^2 V(w)] F(w) = 0$
- Polynomial potential V(w)=w^k+....

Large w behavior

- . log F(w) $\sim \pm$ w^{k/2+1}/h +
- Generic solution grows exponentially
- On each ray there is unique exponentially decreasing F

Stokes data

Standard definition of Stokes data

- k+2 Stokes sectors V_i
 - Re[w^{k/2+1}/h]>0 or Re[w^{k/2+1}/h]<0
 - Unique solution $f_i(w)$ asymptotically small in V_i
- $f_i(w)$ grows in V_{i+1} and V_{i-1}
 - $f_{i+1} f_{i-1} = s_i[h] f_i$
 - s_i[h] is scattering data
 - $W[f_i, f_{i+1}]=1$
 - $s_i = W[f_{i+1}, f_{i-1}]$

Easy example

Linear potential V(w)=w

• Too easy: s₁ = s₂ = s₃ = i

Quadratic potential V(w) =w²- 2 m

- . log F(w) \sim 1/2/h w^2 m/h log w
 - $f_4 = \exp[2 \pi i m/h] f_0$ etc.
 - $s_3 = \exp[2 \pi i m/h] s_1$ etc
 - $s_1 s_2 = -1 exp[-2 \pi i m/h]$

What are small h asymptotics of s_i[h]?

WKB analysis!

WKB analysis

WKB asymptotic expansion

- $\log f = S_0/h + S_1 + \dots (dS_0)^2 = V$
- Integrate phase S₀ along a path

Approximation is good or bad depending on path

- Good if Re[dS₀/h]>0 always along path
- Can we find good paths for $s_i = W[f_{i+1}, f_{i-1}]$?
 - If so, $\log s_i = Z_i / h + ...$ is true

Let's look at good paths

WKB lines

Setting up a RH problem

Upper halflog x_e = 2 πi m/hlog x_m = -log s_1 Lower halflog x_e = 2 πi m/hlog x_m = log s_2

- Discontinuities: KS factors!
 - clockwise at i m/h < 0 $x_m => x_m (1+x_e)$
 - clockwise at i m/h>0 $x_m = x_m (1+x_e^{-1})^{-1}$

Answer can be written as contour integral

• log x_m = m/h log m +

Comparison with exact solution

Exact answer from parabolic cylinder

$$s_1 = \frac{2^{\frac{1}{2} + \frac{m}{h}} i\sqrt{\pi}}{\Gamma(\frac{1}{2} + \frac{m}{h})}$$
$$s_2 = \frac{2^{\frac{1}{2} - \frac{m}{h}} i\sqrt{\pi}e^{i\pi m}}{\Gamma(\frac{1}{2} - \frac{m}{h})}$$

For Hitchin system Tr $p^2 = V(w)$ very similar

- singular both at z=0 and z = infinity
- For V=w²-2m same functional relations as periodic TN