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Scattering amplitudes in N = 4 super Yang-Mills theory

✔ Extended spectrum of asymptotic on-shell states

2 gluons with helicity ± 1 , 6 scalars with helicity 0 , 8 gaugino with helicity ± 1

2

all in the adjoint of the SU(Nc) gauge group

✔ On-shell matrix elements of S−matrix:

. . .

An = S

1

2

n

■ Nontrivial functions of Mandelstam variables
si...j = (pi + . . . + pj)

2 and ’t Hooft coupling
a = g2

YMNc

■ Are independent on gauge choice

■ Probe (hidden) symmetries of gauge theory

✔ Simpler than QCD amplitudes but they share many of the same properties

✔ In planar N = 4 SYM theory they have a remarkable iterative structure [Anastasiou,Bern,Dixon,Kosower]

✔ All-order conjectures [Bern,Dixon,Smirnov] and a proposal for strong coupling via AdS/CFT [Alday,Maldacena]

✔ Final goal: compute the scattering amplitudes in planar N = 4 SYM theory
for arbitrary ’t Hooft coupling a
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General properties of amplitudes in gauge theories

Tree amplitudes:

✔ Are well-defined in D = 4 dimensions (free from UV and IR divergences)

✔ Respect classical (Lagrangian) symmetries of gauge theory

✔ Gluon tree amplitudes are the same in all gauge theories

All-loop amplitudes:

✔ Loop corrections are not universal (gauge theory dependent)

✔ Free from UV divergences (when expressed in terms of renormalized coupling)

✔ Suffer from IR divergences → are not well-defined in D = 4 dimensions

✔ Some of the classical symmetries (dilatations, conformal boosts,...) are broken

Three questions in this talk:

✔ Do tree amplitudes in N = 4 SYM have hidden symmetries?

✔ How powerful are these symmetries to completely determine the scattering amplitudes?

✔ What happens to these symmetries at loop level?
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Color-ordered planar MHV, NMHV,... amplitudes

✔ Color-ordered planar partial amplitudes:

An = tr
ˆ
Ta1Ta2 . . . Tan

˜
Ah1,h2,...,hn

n (p1, p2, . . . , pn) + [Bose symmetry]

✗ Quantum numbers: light-like momenta (p2
i = 0), helicity (hi = 0,± 1

2
,±1), color (ai)

✗ Amplitudes suffer from IR divergences 7→ require regularization (dim.reg. with D = 4 − 2ǫ)

✔ The amplitudes are classified according to their total helicity

htot = h1 + . . . + hn = {n, n − 2, n − 4, . . . ,−(n − 2),−n}

✗ htot = ±n,±(n − 2): 7→ amplitudes vanish to all loops due to supersymmetry

✗ htot = n − 4: 7→ MHV amplitudes A−−+...+, A−+−...+

AMHV
n = A

MHV(tree)
n (pi, hi)M

MHV
n ({sij}; a)

All-loop corrections are described by a single scalar function! [Parke,Taylor]

✗ htot = n − 4 − 2p: 7→ NpMHV amplitudes A−−−+...+, A−−+−...+

ANpMHV
n = much more complicated structure compared with MHV amplitudes

Use supersymmetry to combine amplitudes into superamplitudes
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From MHV amplitudes to MHV superamplitude in N = 4 SYM

✔ On-shell helicity states in N = 4 SYM:

G± (gluons h = ±1), ΓA, Γ̄A (gluinos h = ± 1
2

), SAB (scalars h = 0)

✔ Can be combined into a single on-shell superstate [Mandelstam],[Brink et el]

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p)

+
1

3!
ηAηBηCǫABCDΓ̄D(p) +

1

4!
ηAηBηCηDǫABCDG−(p)

✔ Combine all MHV amplitudes into a single MHV superamplitude [Nair]

AMHV
n = (η1)4(η2)4 × A

“

G−
1 G−

2 G+
3 . . . G+

n

”

+ (η1)4(η2)2(η3)2 × A
“

G−
1 S̄2 S3 . . . G+

n

”

+ . . .

✔ Spinor helicity formalism: [Xu,Zhang,Chang’87]

p2
i = 0 ⇔ pαα̇

i ≡ pµ
i (σµ)αα̇ = λα

i λ̃α̇
i ≡ |i〉[i|

✔ Superamplitudes are functions of {λi, λ̃i, ηi}

An(Φ1, Φ2, . . . , Φn) = An(λ1, λ̃1, η1; . . . λn, λ̃n, ηn)
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Tree MHV superamplitude

✔ All MHV amplitudes are combined into a single superamplitude (spinor notations 〈ij〉 = λα
i λjα)

AMHV
n = i

δ(4)
`Pn

i=1 pi

´
δ(8)

`Pn
i=1 λα

i ηA
i

´

〈12〉〈23〉 . . . 〈n1〉

✔ On-shell N = 4 supersymmetry: [Nair]

qA
α =

X

i

λi,αηA
i , q̄A α̇ =

X

i

λ̃i,α̇
∂

∂ηA
i

=⇒ qA
α AMHV

n = q̄A α̇AMHV
n = 0

✔ (Super)conformal invariance [Witten]

kαα̇ =
X

i

∂2

∂λα
i ∂λ̃α̇

i

=⇒ kαα̇AMHV
n = 0

Much less trivial to verify for NMHV amplitudes

✔ In fact, (super)conformal symmetry is almost exact (due to holomorphic anomaly)

s̄AMHV
n ∼

X

i

“

ηiλ̃i+1 − ηi+1λ̃i

”

δ(2)(λi, λi+1)AMHV
n−1

s̄AMHV
n is localized at collinear configurations pi‖pi+1 [Bargheer,Beisert,Galleas,Loebbert,McLoughlin]
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Dual N = 4 superconformal symmetry I

✔ The N = 4 superamplitudes possess a much bigger, dual superconformal symmetry
[Drummond, Henn, GK, Sokatchev]

✔ Chiral dual superspace (xαα̇ , θA
α , λα):

p1

p2

p3

pn

(x1,θ1)

(x2,θ2)

(x3,θ3)

(xn,θn)

✗ p =
nX

i=1

pi = 0 → pi = xi − xi+1

✗ q =
nX

i=1

λiηi = 0 → λi α ηA
i = (θi − θi+1)A

α

✔ The MHV superamplitude in the dual superspace

AMHV
n = i(2π)4

δ(4) (x1 − xn+1) δ(8)(θ1 − θn+1)

〈12〉〈23〉 . . . 〈n1〉

✔ N = 4 supersymmetry in the dual superspace:

QA α =
nX

i=1

∂

∂θA α
i

, Q̄A
α̇ =

nX

i=1

θA α
i

∂

∂xα̇α
i

, Pαα̇ =
nX

i=1

∂

∂xα̇α
i

✔ Dual supersymmetry

QA αAMHV
n = Q̄A

α̇AMHV
n = Pαα̇AMHV

n = 0
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Dual N = 4 superconformal symmetry II

✔ Super-Poincaré + inversion = conformal supersymmetry:

✗ Inversions in the dual superspace

I[λα
i ] = (x−1

i )α̇βλiβ , I[θα A
i ] = (x−1

i )α̇βθA
iβ

✗ Neighbouring contractions are dual conformal covariant

I[〈i i + 1〉] = (x2
i )−1〈i i + 1〉

✗ Impose cyclicity, xn+1 = x1, θn+1 = θ1, through delta functions. Then, only in N = 4,

I[δ(4)(x1 − xn+1)] = x8
1 δ(4)(x1 − xn+1)

I[δ(8)(θ1 − θn+1)] = x−8
1 δ(8)(θ1 − θn+1)

✔ The tree-level MHV superamplitude is covariant under dual conformal inversions

I
h

AMHV
n

i

=
`
x2
1x2

2 . . . x2
n

´
×AMHV

n

✔ Dual superconformal covariance is a property of all tree-level superamplitudes

(MHV, NMHV, N2MHV,...) in N = 4 SYM theory [Drummond,Henn,GK,Sokatchev],[Brandhuber,Heslop,Travaglini]
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Symmetries at tree amplitudes

✔ The relationship between conventional and dual superconformal su(2, 2|4) symmetries:
[Drummond,Henn,GK,Sokatchev]

p

q

s

k P

K

S

Q

q̄ = S̄

s̄ = Q̄

✔ The same symmetries appear at strong coupling from invariance of AdS5×S5 sigma model
under bosonic [Kallosh,Tseytlin] + fermionic T-duality [Berkovits,Maldacena],[Beisert,Ricci,Tseytlin,Wolf]

✔ (Infinite-dimensional) closure of two symmetries has Yangian structure [Drummond,Henn,Plefka]

✔ All tree-level amplitudes are known [Drummond,Henn] from the supersymmetric generalization of the
BCFW recursion relations [Brandhuber,Heslop,Travaglini],[Bianchi,Elvang,Freeman],[Arkani-Hamed,Cachazo,Kaplan]

Are tree level amplitudes completely determined by the symmetries?
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Invariants of both symmetries

✔ The ‘ratio’ of two tree superamplitudes

An = AMHV
n Rn = AMHV

n

h

RMHV
n + RNMHV

n + . . .
i

✔ The ratio Rn−functions are invariants of both conventional (g) and dual (G) symmetries:

g · RNpMHV
n = G · RNpMHV

n = 0 ,

RNpMHV
n = Polynomial in θ’s of degree 4p

Classification of NpMHV superinvariants remains to be done

✗ MHV superinvariants (p = 0) are trivial: RMHV
n = const

✗ NMHV superinvariants (p = 1) are nontrivial: [Drummond,Henn,GK,Sokatchev]

Rrst(x, λ, θ) =
〈s − 1s〉〈t − 1t〉δ(4)(〈r|xrsxst|θtr〉 + 〈r|xrtxts|θsr〉)

x2
st〈r|xrsxst|t − 1〉〈r|xrsxst|t〉〈r|xrtxts|s − 1〉〈r|xrtxts|s〉

=

r r−1

r+1

t

ss−1

t−1

Supersymmetric extenstion of three-mass box coefficients [Bern,Dixon,Kosower]
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How powerful are the symmetries?

General expression for the NMHV ratio function dictated by the symmetries

g · RNMHV
n = G · RNMHV

n = 0 7→ RNMHV
n =

X

r,s,t

crstRrst (with crst arbitrary!)

✔ The combined action of conventional and dual superconformal symmetries is not sufficient to fix
all the freedom in the tree-level amplitudes

✔ The additional information needed comes from the study of the analytic properties of the
amplitudes: [GK, Sokatchev]

✗ Tree amplitudes only have ‘physical’ poles in multi-particle invariant masses
(ps + . . . + pt−1)2 = x2

st = 0

✗ Tree amplitudes should be free from spurious singularities

Analytical properties of Rrst−invariants:

Rrst ∼
„

x2
st
|{z}

physical pole

×〈r|xrsxst|t − 1〉〈r|xrsxst|t〉〈r|xrtxts|s − 1〉〈r|xrtxts|s〉
| {z }

spurious poles

«−1

Kinematical configuration corresponding to spurious pole at 〈r|xrsxst|t〉 = 0:

−x2
rtx

2
r+1,sx2

t+1,s + x2
r+1,tx

2
rsx2

t+1,s − x2
r+1,t+1x2

rsx2
ts + x2

r,t+1x2
r+1,sx2

ts = 0

Spurious poles should cancel inside RNMHV
n !
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Cancellation of spurious poles

✔ Each invariant Rrst has four sets of spurious poles

〈r|xrsxst|t − 1〉 = 〈r|xrsxst|t〉 = 〈r|xrtxts|s − 1〉 = 〈r|xrtxts|s〉 = 0

✔ ‘Master identity’: all spurious poles of Rrst cancel in the linear combination of invariants:

Rrst + (Rstr + Rtrs − Rs−1 tr − Rt−1 rs)

✗ n = 8 NMHV: general expression consistent with all symmetries

RNMHV;0
8 = αR147 + βR148 + γR157 + δR158 + εR168 + cyclic

Cancellation of spurious poles leads to

α − β = α + γ − δ = 2α − γ = δ − ε = β + γ − δ = β + γ − ε = 0

This system is overdetermined but it has a unique solution

β = α , γ = 2α , δ = ǫ = 3α

✔ The same relations (with α = 1
8

) ensure the correct behavior in the collinear limit pi‖pi+1

Rn(. . . , i, i + 1, . . .)
i‖i+1→ Rn−1(. . . , ℓ, . . .)

Tree amplitudes are uniquely fixed by symmetries + analytici ty condition [GK,Sokatchev]
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Do symmetries survive loop corrections?

✔ Loop corrections to the amplitudes necessarily induce infrared divergences

✔ The scattering amplitudes are well-defined in D = 4 − 2ǫIR dimensions only

✔ All-loop planar (super)amplitudes can be split into a IR divergent and a finite part

A(all−loop)
n = Div(1/ǫIR) [Fin + O(ǫIR)]

✗ IR divergences (poles in ǫIR) exponentiate (in any gauge theory!) [Mueller],[Sen],[Collins],[Sterman],...

Div(1/ǫIR) = exp

(

−1

2

∞X

l=1

al

 

Γ
(l)
cusp

(lǫIR)2
+

G(l)

lǫIR

!
nX

i=1

(−si,i+1)
lǫIR

)

✗ IR divergences are in the one-to-one correspondence with UV divergences of Wilson loops
[Ivanov,GK,Radyushkin]

Γcusp(a) =
P

l alΓ
(l)
cusp = cusp anomalous dimension of Wilson loops

G(a) =
P

l alG
(l)
cusp = collinear anomalous dimension

✔ IR divergences preserve Poincaré supersymmetry but break conformal + dual conformal
symmetry

IR divergences come from small momenta (=large distances) and, therefore, the
conformal anomaly is not ‘localized’ (= difficult to control)
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Anomalous symmetries at loop level

✔ Some symmetries (p, q, q̄, P, Q, S̄, ...) survive loop corrections while other (s, s̄, k, K, S, Q̄, ...)
are broken

p

q

s

k P

K

S

Q

q̄ = S̄

s̄ = Q̄

✔ But the anomalies are not independent: [K, Q̄] = S , [s, s̄] = k

✔ Three independent anomalies are

sαA =
X

i

∂2

∂λα
i ∂ηA

i

, Q̄A
α̇ =

X

i

ηA
i

∂

∂λ̃α̇
i

, Kαα̇ =
X

i

ˆ
xαβ̇

i xβα̇
i

∂

∂xββ̇
i

+xβα̇
i θαB

i

∂

∂θβB
i

+. . .
˜

✔ Dual conformal K−anomaly is universal for all superamplitudes (MHV, NMHV,...)

✔ K−anomaly can be determined to all loops from Wilson loop/MHV amplitude duality, whereas
the s− and Q̄−anomalies are hard to control
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MHV scattering amplitudes/Wilson loop duality

⇐⇒

. . .

x1 x2

x3

. . .xn−1

xnp1

p2p3

...

pn−1 pn

MHV amplitudes are dual to light-like Wilson loops

lnA(MHV)
n ∼ ln W (Cn) + O(1/N2

c ) , Cn = light-like n−(poly)gon

✔ At strong coupling, agrees with the BDS ansatz [Alday,Maldacena]

✔ At weak coupling, the duality was verified against BDS ansatz to two loops for n ≥ 4
[Drummond,Henn,GK,Sokatchev], [Anastasiou,Brandhuber,Heslop,Khoze,Spence,Travaglini]

Wilson loops match the BDS ansatz for n = 4, 5 but not for n ≥ 6

✔ Scattering amplitude/Wilson loop duality also holds in QCD but in the Regge limit only [GK]
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Dual conformal K−anomaly

Dual conformal symmetry of the amplitudes ⇔ Conformal symmetry of Wilson loops

Dual conformal anomaly ⇔ Conformal anomaly of Wilson loops

✔ How could Wilson loops have conformal anomaly in N = 4 SYM?

✗ Were the Wilson loop well-defined (=finite) in D = 4 dimensions it would be conformal
invariant

W (Cn)=W (C′
n)

✗ ... but W (Cn) has cusp UV singularities 7→ dim.reg. breaks conformal invariance

W (Cn) = W (C′
n) × [cusp anomaly]

✔ All-loop anomalous conformal Ward identities for the finite part of the Wilson loop

ln W (Cn) = F
(WL)
n + [UV divergencies] + O(ǫ)

Under special conformal transformations (boosts), to all orders, [Drummond,Henn,GK,Sokatchev]

Kµ Fn ≡
nX

i=1

ˆ
2xµ

i (xi · ∂xi) − x2
i ∂µ

xi

˜
Fn =

1

2
Γcusp(a)

nX

i=1

xµ
i,i+1 ln

“ x2
i,i+2

x2
i−1,i+1

”

The same relations also hold at strong coupling [Alday,Maldacena],[Komargodski]
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Dual conformal anomaly at work

Consequences of the conformal Ward identity for the finite part of the Wilson loop Wn:

✔ n = 4, 5 are special: there are no conformal invariants (too few distances due to x2
i,i+1 = 0 )

=⇒ the Ward identity has a unique all-loop solution (up to an additive constant)

F4 =
1

4
Γcusp(a) ln2

“x2
13

x2
24

”

+ const ,

F5 = −1

8
Γcusp(a)

5X

i=1

ln
“x2

i,i+2

x2
i,i+3

”

ln
“x2

i+1,i+3

x2
i+2,i+4

”

+ const

Exactly the BDS ansatz for the 4- and 5-point MHV amplitudes!

✔ Starting from n = 6 there are conformal invariants in the form of cross-ratios uijkl =
x2

ilx
2
jk

x2
ik

x2
jl

General solution to the Ward identity contains an arbitrary function of the conformal cross-ratios.

✔ Crucial test - go to six points at two loops where the answer is not determined by conformal
symmetry [Drummond,Henn,GK,Sokatchev] [Bern,Dixon,Kosower,Roiban,Spradlin,Vergu,Volovich]

F
(WL)
6 = F

(MHV)
6 6= F

(BDS)
6

The Wilson loop/MHV amplitude duality holds at n = 6 to two loops!
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Dual conformal symmetry beyond MHV

One-loop NMHV superamplitudes

✔ n−gluon one-loop NMHV amplitudes are known [Bern,Dixon,Kosower]

✔ New result for one-loop NMHV superamplitude: [Henn,Drummond,GK,Sokatchev]

ANMHV;1
n = AMHV;1

n ×
h

RNMHV
n (xi, λi, θ

A
i ) + O(ǫ)

i

IR divergences break symmetries of NMHV and MHV but they cancel inside the ‘ratio function’

One-loop NMHV ‘ratio function’ = sum of tree-level dual superconformal invariants:

RNMHV
n =

X

p,q,r

Rpqr(λ, λ̃, θ) Vpqr(x2
ij)

✗ Helicity structure is invariant under both (conventional and dual) superconformal symmetries

✗ Loop corrections are described by scalar functions

Vpqr = 1 + a V (1)({upqr}) + O(a2) , upqr = dual conformal cross-ratios

they are dual conformal invariants made of IR finite combinations of 1-loop scalar box
integrals [Henn,Drummond,GK,Sokatchev],[Brandhuber,Heslop,Travaglini],[Elvang,Freedman,Kiermaier]

✗ RNMHV
n is free from spurious singularities and has correct collinear limit

The ratio function is dual conformal invariant but it is not superconformal invariant, why ?
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Dual supersymmetry Q−anomaly

✔ Main idea: Instead of Q̄An let us compute its discontinuity Discs

`
Q̄An

´
= Q̄(DiscsAn)

Discs123AMHV;1
6 = AMHV;0(−ℓ1, 1, 2, 3,−ℓ2) ⋆ AMHV;0(ℓ2, 4, 5, 6, ℓ1) ,

Two tree amplitudes are integrated over the phase space of on-shell states ℓ1 and ℓ2

δQ̄Discs123AMHV;1
6 = δQ̄AMHV;0(−ℓ1, 1, 2, 3,−ℓ2) ⋆ AMHV;0(ℓ2, 4, 5, 6, ℓ1)

+ AMHV;0(−ℓ1, 1, 2, 3,−ℓ2) ⋆ δQ̄AMHV;0(ℓ2, 4, 5, 6, ℓ1)

✔ If tree supeamplitudes were exactly invariant, δQ̄AMHV;0 = 0, then δQ̄Discs123AMHV;1
6 = 0.

But they are not due to holomorphic anomaly! [Cachazo,Svrcek,Witten],[Bena,Bern,Kosower,Roiban]

✔ Q̄−anomaly of one-loop NMHV ratio function

Q̄A
α̇

`
Discx2

14
RNMHV;1

6

´
∼ (η1[23] + η2[31] + η3[12])AR146

×
 

λ̃1α̇[6|x63|3〉
x2
14[61][12]

+
λ̃3α̇[4|x41|1〉
x2
14[23][34]

!

+ (i → i + 3) 6= 0

Holomorphic anomaly is responsible for the breakdown of Q̄ = s̄ symmetry of the ratio function
(but not of the dual conformal symmetry!) [GK,Sokatchev]
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Symmetry of all-loop superamplitudes

DHKS proposal for all-loop superamplitude in N = 4 SYM:

An(xi, λi, θ
A
i ) = AMHV

n + ANMHV
n + AN2MHV

n + . . . + AMHV
n

✔ At tree level, An is fixed by conventional and dual symmetries + analyticity conditions

✔ At loop level, both symmetries become anomalous due to IR divergences + holomorphic
anomaly

✔ The dual superconformal symmetry is restored in the ratio of superamplitudes An and AMHV
n

An(xi, λi, θ
A
i ) = AMHV

n ×
h

Rn(xi, λi, θ
A
i ) + O(ǫ)

i

The ratio function

Rn = 1 + RNMHV
n + RN2MHV

n + . . .

is IR finite and, most importantly, it is dual conformal invariant [Drummond,Henn,GK,Sokatchev]

Kαα̇R
(all loops)
n = 0

The conjecture was recently proven to one loop [Brandhuber,Heslop,Travaglini]
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Conclusions and open questions

✔ Tree amplitudes in N = 4 SYM respect conventional and dual superconformal symmetries but
their combined action is not sufficient to fix the amplitudes. The additional information needed
comes from analyticity properties of the amplitudes.

✔ At loop level, both symmetries are broken by IR divergences + holomorphic anomaly. The dual
conformal anomaly is well understood but how to control the remaining anomalies?

We need the dual model for N = 4 superamplitude:

Dual model for the MHV amplitude = light-like Wilson loop

Dual model for the MHV+NMHV+ . . . + MHV amplitude = ???

Q̄−anomaly indicates that the dual model does not respect Poincaré supersymmetry.

How could it be?

✔ Weak/strong coupling paradox:

At weak coupling, the Q̄−anomaly is present to all loops Q̄Rn = af1 + a2f2 + . . . but it is not
seen at strong coupling !?

ANpMHV
n ∼ exp

`
−√

aSmin

´ ˆ
1 + O(1/

√
a)
˜

⇒ RNpMHV
n ∼ 1 + O(1/

√
a)

What is the meaning of holomorphic anomaly in string theory?
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