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Scattering Amplitudes in N = 4 SYM

• Scattering amplitudes in N = 4 SU(N) SYM possess a great deal of symmetry and 
simplicity, particularly in the large N limit, which makes for an attractive toy model of 
more realistic theories.  The leading colour contribution to amplitudes is given by, 

• One example: all-loop MHV amplitudes:                             with 

• Depends on tree level amp., one-loop amp. , cusp & collinear anomalous dimensions + R

• We can find the cusp anomalous dimension from an integrable model (also some results 
for collinear anom. dim).  

• Are there symmetries behind the other structures of amplitudes? Can we determine R?
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Dual conformal invariance
• One can introduce “dual” variables                          which solve the momentum 

constraint:                                       and we identify                    . 

• Amplitudes only depend on p’s so they are trivially invariant under dual translations

• Can consider dual conformal transformations which act linearly on dual space coordinates 
and dual super-conformal invariance. Superamplitudes appear to be covariant under dual 
superconformal transformations! 

• This symmetry constrains the integrals that can appear in loop calculations. 

• Related to the duality between amplitudes and light-like Wilson loops seen perturbatively. 
[Alday, Maldacena] [Drummond, Henn, Korchemsky, Sokatchev][Brandhuber, Heslop, Travaglini]

• At strong coupling (via AdS/CFT duality) the dual conformal symmetries can be explained 
via a supersymmetric T-duality transformation that maps the string model to itself. [Alday, 
Maldacena] [Berkovits, Maldacena]

• Constrains but doesn’t fix the remainder term R.
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Structure of amplitudes
• The existence of the remainder function has been shown perturbatively using generalised 

unitarity methods 

• There is further evidence from the duality with Wilson loops and high energy scattering 
limits

✦ At strong coupling there is the worldsheet integrable structure based on the psu(2,2|4) 
loop algebra seen in the calculation of string energies. Dual conformal invariance 
corresponds to a different embedding of psu(2,2|4) into this algebra. [Bena, Polchinski, Roiban]
[Beisert, Ricci, Tseytlin, Wolf][Berkovits,Maldacena]

✦ Yangian algebra can be defined for tree level amplitudes. [Drummond, Henn, Plefka]

✤ Can we use the integrable structures, which have been so useful for finding the planar 
spectrum, to determine the amplitudes?

✤ Need to carefully understand the action of symmetries for even the standard 
superconformal symmetries. 

✤ Can we learn something from integrable spin chain picture for local operators? 

[Bern, Dixon,Kosower,Roiban,
Spradlin, Vergu, Volovich]

[Alday, Maldacena] [Bartels
Lipatov

Sabio Vera]

[Drummond,Henn
Korchemsky
Sokatchev]



On-shell description

• Spinor helicity formalism for massless particles gives extremely compact expressions for 
amplitudes.

• Given a light-like four momentum for each external leg,       , we can decompose it into 
two component spinors,                  ,  (for 3+1 signature spinors are related by c.c. & for 
positive energy particles              ).

• Decomposition is unique up to a phase: 

• Standard convention:      has helicity -1/2 ;       has helicity +1/2.

• Introduce spinor brackets:                              & 

• Onshell content of N = 4 SYM:

• Introduce Graβmanian variable, ηA, and combine all states into a single super-wavefunction

• Super-amplitudes combine all external states:  
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Ĵ(Λ) "→ [X, Ĵ(Λ)]
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• Can extend algebra to              by including central charge and helicity charge 

• The action on n-point amplitudes of a single particle generator,    ,  is given by

which should annihilate tree-level amplitudes,                      .

• It has been shown that tree level amplitudes carry a representation of the           

Yangian algebra with the action of level one generators being 
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Scaling
 Dim.

Helicity

generators P, special conformal generators K, the dilatation generator D

as well as supercharges Q, Q̄ and special conformal supercharges S, S̄,
Using the spinor helicity superspace coordinates the representation of the
superconformal algebra can be written in a very compact fashion [?]

La
b = λa∂b − 1

2δ
a
bλc∂c, L̄ȧ

ḃ = λ̄ȧ∂̄ḃ −
1
2δ

ȧ
ḃ
λ̄ċ∂̄ċ,

D = 1
2∂cλc + 1

2λ̄
ċ∂̄ċ, RA

B = ηA∂B − 1
4δ

A
BηC∂C,

QaB = λaηB, SaB = ∂a∂B,

Q̄ȧ
B = λ̄ȧ∂B, S̄B

ȧ = ηB∂̄ȧ,

Paḃ = λaλ̄ḃ, Kaḃ = ∂a∂̄ḃ.

where we abbreviate ∂a = ∂/∂λa, ∂̄ȧ = ∂/∂λ̄ȧ and ∂A = ∂/∂ηA.
Furthermore, let us introduce a central charge C and the helicity charge
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ȧ
ḃ
λ̄ċ∂̄ċ,
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B which would extend the algebra to u(2, 2|4). Their representation reads

C = ∂aλ
a − λ̄ċ∂̄ċ − ηC∂C = 2 + λa∂a − λ̄ċ∂̄ċ − ηC∂C, B = ηC∂C.
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J

J =

n∑

k=1

Jk

J · An = 0

[Drummond, Henn, 
Plefka]

Consistent with cyclicity for 
superconformally invariant 

amplitudes!

[Witten]



Tree Level Amplitudes
• Colour ordered tree level amplitudes have a particularly simple form when written in terms 

of spinor brackets e.g. n-point MHV gluon amplitude

                                                                                                      ,  

where we have neglected overall iπ’s etc but kept the momentum delta-function. 

• Using the onshell superspace formulation we have a super MHV-amplitude from which we 
can extract component amplitudes by taking derivatives w.r.t. the η’s

                                                                                  ,

here we have a Grassmann delta-function imposing super-momentum conservation. 

• More general tree amplitudes can be written as 

where the P’s depend on the Grassmann variables increasing in Grassmann degree by 4 at 
each step. For example the gluon MHV amplitude appears as 

The Parke-Taylor form makes the singularity structure of the MHV amplitude transparent.
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ȧ
k

QaA
=

n∑

k=1

λa
kηA

k
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+ . . .
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4
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[Parke,Taylor][Berends, Giele]

[Nair]



Collinear Limits
• Analytic properties provide strong physical constraints on amplitudes.   In particular, tree 

level amplitudes have poles as various kinematic invariants vanish;  colour ordered 
amplitudes can only have poles in sums of cyclically adjacent momenta i.e.

• MHV amplitudes only have collinear (two-particle) channels and poles get reduced by 
angular momentum factors to “square roots”  i.e. spinor brackets. 

Amplitudes factorize in a universal fashion with the intermediate state momenta given by 
pP=pa+pb i.e. the collinear momenta scale as pa» z pP,  pb» (1-z) pP, and for e.g.

To consider collinear limits of superamplitudes we must also rescale the Grassmann 
variables                                               and one finds  

An An-1 S

P
2

i,j → 0 Pi,j = pi + pi+1 + · · · + pjwhere 

An(. . . , a, b, . . . ) →
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Splittree
−h (z, a, b)An−1(. . . , P
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1
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zηP , ηb →
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An(. . . , a, b, . . . ) →
1
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An−1(. . . , λP , λ̄P , ηP , . . . )
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BCFW in superspace

BCFW recursion relations relate the n-point scattering amplitudes to a sum over a product of 
amplitudes of fewer points (derived by considering the amplitudes as analytic functions of 
complex momenta and using Cauchy’s theorem)

where zP indicates that momenta are shifted e.g. simplest case is for two adjacent legs. 
The shift parameter zP must be chosen so that the intermediate momenta 

is null.
The superspace version corresponds to replacing the sum over intermediate states with a 
superspace integral

and it is also necessary to shift the the Grassmann variables
 The validity of these relations requires that the shifted superamplitudes vanish as  z! 1

n
1
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P 2
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An
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d4ηPi
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P 2
i
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• Consider the action of symmetry generators on single trace operators (familiar spin chain 
picture)

• Free representation of superconformal algebra on local operators gets deformed at loop 
level as it is required to account for anomalous dimensions. 

• Tree level generators act on a single site and give back a single site however at loops 
we get more complicated, long range, effects.

• Action is dynamical: it can change the number of sites. Occurs even classically as susy 
generators exchange a fermion for a commutator of scalars. (              )

Local Operators/Spin Chains 

O = Tr(ΦΦ . . .ΦΨΦ . . .ΦΨΦ . . .Φ) =

Weak coupling expansion of integral equation [ NB, Eden
Staudacher]
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+ g + g

+ g2 + g2 + g2 + g2 +...

=

∑
J(g)

J(g) =
n∑
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Jk(g) Jk(g) =
∑

m,n

∑

!

g
2!+m+n−2

(

J(!)
m,n

)

k
with

Can we extend this to scattering amplitudes?

[Beisert]

[Beisert, Kristjansen, Staudacher]

g ∼
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λ



Scattering Amplitudes
• Scattering amplitudes are UV finite, instead one has IR divergences.

• Nonetheless there are similarities in their structure so one could:
Expect symmetry generator representation on amplitudes to be deformed but not 
necessarily equivalent to that carried by local operators. 
Expect the action to be long range at higher orders and act on multiple legs.
Expect the action to be dynamical and change the number of legs. 

Weak coupling expansion of integral equation [ NB, Eden
Staudacher]
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~

J(g) = J0 + gJ
(0)
1,2 + gJ

(0)
2,1 + g

2J
(1)
1,1 + . . .Thus we have                                                                 acting  on a linear combination of 

amplitudes “                                ”  as

Need to combine amplitudes with different numbers of legs into a single functional.
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• Need to have a convenient way to combine all amplitudes: introduce a generating functional 
for colour ordered amplitudes (written as functions of superspace coordinates)

• Extract amplitudes as usual by taking functional variations:

• Free representation of generators given by: 

• Expect leading deformations to be of the form:
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∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

3

A[J ] =
∑

n

gn−2

n

∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

δ

δJ(Λ)
= J̌(Λ)

3

Λ = (λa, λ̄ȧ, ηA)

d4|4Λ = d4λ d4η

A[J ] =
∑

n

gn−2

n

∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

δ

δJ(Λ)
= J̌(Λ)

(Q0)aB =
∫

d4|4Λ TrλaηBJ(Λ) J̌(Λ) , (S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ) ,

(Q̄0)ȧ
B = −

∫
d4|4Λ Tr λ̄ȧ∂BJ(Λ) J̌(Λ) , (S̄0)B

ȧ = −
∫

d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ) ,

(P0)aḃ =
∫

d4|4Λ Trλaλ̄ḃJ(Λ) J̌(Λ) , (K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ) .

3

A[J ] =
∑

n

gn−2

n

∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

δ

δJ(Λ)
= J̌(Λ)

(Q0)aB =
∫

d4|4Λ TrλaηBJ(Λ) J̌(Λ) , (S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ) ,

(Q̄0)ȧ
B = −

∫
d4|4Λ Tr λ̄ȧ∂BJ(Λ) J̌(Λ) , (S̄0)B

ȧ = −
∫

d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ) ,

(P0)aḃ =
∫

d4|4Λ Trλaλ̄ḃJ(Λ) J̌(Λ) , (K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ) .

3

A[J ] =
∑

n

gn−2

n

∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

δ

δJ(Λ)
= J̌(Λ)

(Q0)aB =
∫

d4|4Λ TrλaηBJ(Λ) J̌(Λ) , (S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ) ,

(Q̄0)ȧ
B = −

∫
d4|4Λ Tr λ̄ȧ∂BJ(Λ) J̌(Λ) , (S̄0)B

ȧ = −
∫

d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ) ,

(P0)aḃ =
∫

d4|4Λ Trλaλ̄ḃJ(Λ) J̌(Λ) , (K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ) .

(S̄0)B
ȧ = −

∫
d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ)

(K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ)

3

A[J ] =
∑

n

gn−2

n

∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

δ

δJ(Λ)
= J̌(Λ)

(Q0)aB =
∫

d4|4Λ TrλaηBJ(Λ) J̌(Λ) , (S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ) ,

(Q̄0)ȧ
B = −

∫
d4|4Λ Tr λ̄ȧ∂BJ(Λ) J̌(Λ) , (S̄0)B

ȧ = −
∫

d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ) ,

(P0)aḃ =
∫

d4|4Λ Trλaλ̄ḃJ(Λ) J̌(Λ) , (K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ) .

(S̄0)B
ȧ = −

∫
d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ)

(K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ)

3

Amplitude Generating Functional 

A[J ] =
∑

n

gn−2

n

∫ ∏
d4|4Λ An(Λ1, . . . ,Λn) TrJ(Λ1) . . . J(Λn)

δ

δJ(Λ)
= J̌(Λ)

(Q0)aB =
∫

d4|4Λ TrλaηBJ(Λ) J̌(Λ) , (S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ) ,

(Q̄0)ȧ
B = −

∫
d4|4Λ Tr λ̄ȧ∂BJ(Λ) J̌(Λ) , (S̄0)B

ȧ = −
∫

d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ) ,

(P0)aḃ =
∫

d4|4Λ Trλaλ̄ḃJ(Λ) J̌(Λ) , (K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ) .

(S̄0)B
ȧ = −

∫
d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ)

(K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ)

3

test

(S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ)

(S̄0)B
ȧ = −

∫
d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ)

(K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ)

4

test

(S0)aB =
∫

d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ)

(S̄0)B
ȧ = −

∫
d4|4Λ Tr ηB∂̄ȧJ(Λ) J̌(Λ)

(K0)aḃ =
∫

d4|4Λ Tr ∂a∂̄ḃJ(Λ) J̌(Λ)

J
(0)
(1,2) ∼

∫
TrJJJ̌

4



Tree level superconformal symmetry

• We start with the simplest case, tree level, and we want to show that for all generators, J,

• We act with free generators on n-point tree level amplitudes and

• see that amplitudes are not actually invariant 

• write in terms of generating functionals combining amplitudes with different numbers 
of legs

• find a deformation of the generators such that they do annihilate the combined 
amplitudes

• show that the deformed generators still satisfy the psu(2,2|4) algebra.

J
(0)
1,1An + J

(0)
1,2An−1 + J

(0)
1,3An−2 + · · · = 0

An

+
An−1

+
An−2

+ . . . = 0.

5

J



An

+
An−1

+
An−2

+ . . . = 0.

Start with action of S̄0 on MHV n-point amplitudes

AMHV
n =

δ(4)(
∑

λiλ̄i)δ(8)(
∑

λiηi)∏
〈k, k + 1〉

5

An

+
An−1

+
An−2

+ . . . = 0.

Start with action of S̄0 on MHV n-point amplitudes

AMHV
n =

δ(4)(
∑

λiλ̄i)δ(8)(
∑

λiηi)∏
〈k, k + 1〉

5Recalling that the spinor brackets are defined as, 〈k, k + 1〉 = εabλa
kλ

b
k+1,

we see that the MHV amplitudes, AMHV
n , are holomorphic functions

of the λ’s except for the argument of the momentum delta-function
P aȧ =

∑
λiλ̄i. Thus we have

(S̄0)B
ȧ AMHV

n =
[ ∑

j

ηB
j

∂

∂λ̄ȧ
j

δ(4)(
∑

λiλ̄i)
]δ(8)(

∑
λiηi)∏

〈k, k + 1〉

=
[ ∑

j

λc
jη

B
j

]∂δ(4)(P )
∂P cȧ

δ(8)(
∑

λiηi)∏
〈k, k + 1〉 = 0!

6

However this is too fast; there are anomalous contributions of the form 

which gives rise to contributions of the form (crucially depends on 3+1 signature) 

∂

∂z̄

1

z
= πδ

(2)(z)

∂

∂λ̄ȧ

1

〈λµ〉
= πδ(2)(〈λµ〉) ε

ȧḃ
µ̄ḃ

Get new terms from collinear limit: we must 
include this effect!

[Cachazo, Svrček,Witten]



which gives rise to contributions of the form

∂

∂λ̄ȧ

1
〈λµ〉 = πδ(2)(〈λµ〉) εȧḃ µ̄ḃ

−π
n∑

k=1

εȧḃ

(
λ̄ḃ

k−1η
B
k − λ̄ḃ

kη
B
k−1

)δ(2)(〈λk−1,λk〉) δ(4)(P ) δ(8)(Q)
〈12〉. . . 〈k − 1, k〉0. . . 〈n1〉 .

7

Recalling that the spinor brackets are defined as, 〈k, k + 1〉 = εabλa
kλ

b
k+1,

we see that the MHV amplitudes, AMHV
n , are holomorphic functions

of the λ’s except for the argument of the momentum delta-function
P aȧ =

∑
λiλ̄i. Thus we have

(S̄0)B
ȧ AMHV

n =
[ ∑

j

ηB
j

∂

∂λ̄ȧ
j

δ(4)(
∑

λiλ̄i)
]δ(8)(

∑
λiηi)∏

〈k, k + 1〉

=
[ ∑

j

λc
jη

B
j

]∂δ(4)(P )
∂P cȧ

δ(8)(
∑

λiηi)∏
〈k, k + 1〉 = 0!

However this is too fast, there is an anomaly contribution of the form

∂

∂z̄

1
z

= πδ(2)(z)

6

....anomalous term is:

...write this as in terms of generating functional for n-point MHV amplitudes  

¸1

®
¸2

¸
...where we have evaluated the delta-function imposing collinearity so that

We see that the anomalous variation produces a (n-1)-point MHV amplitude with a 
modification on the first leg. Can compensate for this by including 

λ1 ∼ λ12 sinα η1 ∼ η12 sinα + η′ cos α

λ2 ∼ λ12 cos α η2 ∼ η12 cos α− η′ sinα

(S̄0)B
ȧAMHV

n [J ] = −2π

∫
d4|4Λ

n∏

k=3

d4|4Λkd
4η′dα εȧḃλ̄

ḃ
1η

B
2

×AMHV
n−1 (Λ, Λ3, . . . ,Λn) Tr[Ĵ(Λ1), J(Λ2)] . . . J(Λn)

8

λ1 ∼ λ sinα η1 ∼ η sinα + η′ cos α

λ2 ∼ λ cos α η2 ∼ η cos α− η′ sinα

S̄
(0)
1,2 = S̄+

(
S̄+

)B

ȧ
= 2π2

∫
dΛ4|4d4η′dαεȧċλ̄

ċ
1η

B
2 Tr[J(λ1), J(Λ2)]J̌(Λ)

9

λ1 ∼ λ sinα η1 ∼ η sinα + η′ cos α

λ2 ∼ λ cos α η2 ∼ η cos α− η′ sinα

S̄
(0)
1,2 = S̄+

(
S̄+

)B

ȧ
= 2π2

∫
dΛ4|4d4η′dαεȧċλ̄

ċ
1η

B
2 Tr[J(λ1), J(Λ2)]J̌(Λ)

9

with

λ1 ∼ λ sinα η1 ∼ η sinα + η′ cos α

λ2 ∼ λ cos α η2 ∼ η cos α− η′ sinα

(
S̄+

)B
ȧ = 2π2

∫
dΛ4|4d4η′dα εȧċλ̄

ċ
1η

B
2 Tr[Ĵ(Λ1),J(Λ2)]J̌(Λ)

9



• We thus find a correction to the fermionic special conformal symmetry such that

or in terms of the all-leg MHV amplitude generating functional (and to leading 
order)

Classical Representation

λ1 ∼ λ sinα η1 ∼ η sinα + η′ cos α

λ2 ∼ λ cos α η2 ∼ η cos α− η′ sinα

(
S̄+

)B
ȧ = 2π2

∫
dΛ4|4d4η′dα εȧċλ̄

ċ
1η

B
2 Tr[Ĵ(Λ1),J(Λ2)]J̌(Λ)

S̄0AMHV
n + S̄+AMHV

n−1 = 0

or in terms of the all amplitude generating functional (and to leading

9

order)

S̄AMHV[J ] = 0

10

Note:

order)

S̄AMHV[J ] = 0

Note:-

• S̄+ increases the helicity of amplitude by 2.

• gives a recursive structure which ends with S̄+AMHV
4 = 0

Corrections to S can be found by considering MHV amplitudes where
one finds a correction S

(0)
1,2 = S− which decreases the helicity by 2. There

are similar terms for the special conformal generator K

K = K0 + K+ + K− + K+−

There are no deformations to D,P,Q or Q̄ at this order.

10

order)

S̄AMHV[J ] = 0

Note:-

• The + indicates that S̄+ increases the helicity charge of amplitude.

• gives a recursive structure which ends with S̄+AMHV
4 = 0

Corrections to S can be found by considering MHV amplitudes where
one finds a correction S

(0)
1,2 = S− which decreases the helicity by 2. There

are similar terms for the special conformal generator K

K = K0 + g K+ + g K− + g2 K+−

There are no deformations to D,P,Q or Q̄ at this order.

10

S̄ = S̄0 + S̄+where 

order)

S̄AMHV[J ] = 0

Note :-

• The + indicates that S̄+ increases, by 2, the charge 2n − 4k, where
4k is the helicity charge B of the amplitude.

• This gives a recursive structure which ends with S̄+AMHV
4 = 0

Corrections to S can be found by considering MHV amplitudes where
one finds a correction S

(0)
1,2 = S− which increases k by one. There are

similar terms for the special conformal generator K

K = K0 + g K+ + g K− + g2 K+−

There are no deformations to D,P,Q or Q̄ at this order.

10



• So far we have considered only MHV (and MHV ) amplitudes.  We want to extend this to 
general amplitudes.  With the notation 

we expect to find that the deformed generators

will annihilate an arbitrary tree-level amplitude (i.e. they account for all collinear singularities)

This gives rise to the recursive pattern of relations between all amplitudes

Generic amplitudes

- n-point amplitude with helicity charge 4k i.e. 

An,k AMHV
n = An,2, AMHV

n = An,n−2

J0An,k + J+An−1,k + J−An−1,k−1 + J+−An−2,k−1 = 0

11

An,k AMHV
n = An,2, AMHV

n = An,n−2

J0An,k + J+An−1,k + J−An−1,k−1 + J+−An−2,k−1 = 0

11
These relations arise from collinear singularities which are known to be universal and we expect 
that the action of the deformed generators extends easily to generic amplitudes. Note that the 
generators provide relations between all amplitudes.  

An,k AMHV
n = An,2, AMHV

n = An,n−2

J0An,k + J+An−1,k + J−An−1,k−1 + J+−An−2,k−1 = 0

ANMHV
6 = AMHV

6 (1
2R146 + cyclic)

Rpqr = cpqrδ
(4)(Ξpqr) ,

cpqr =
〈q − 1, q〉〈r − 1, r〉

x2
qr〈p|xprxrq−1|q − 1〉〈p|xprxrq|q〉〈p|xpqxqr−1|r − 1〉〈p|xpqxqr|r〉 ,

ΞA
pqr = −〈p|

[
xpqxqr

r−1∑

i=p

|i〉ηA
i + xprxrq

q−1∑

i=p

|i〉ηA
i

]
.

11

B which would extend the algebra to u(2, 2|4). Their representation reads

C = ∂aλ
a − λ̄ċ∂̄ċ − ηC∂C = 2 + λa∂a − λ̄ċ∂̄ċ − ηC∂C, B = ηC∂C.

J = J0 + g J+ + g J− + g2
J+− .

18

Classical Representation

We find the following corrections for S (only −), S̄ (only +) and K (all)

J = J0 + g J+ + g J− + g J+− .

Collinear anomalies removed from all tree amplitudes: [Bargheer, NB, Galleas
Loebbert, McLoughlin]

J0

J+ J−

J+−

A4,2

A5,2 A5,3

A6,2 A6,3 A6,4

. . .. . .. . .. . .

Multi-particle singularities carry no anomalies.

SC4, Niklas Beisert 21



• Start with a specific example -- six point NMHV amplitude.

• Explicit expression is known (in terms of dual superconformal invariants)

• In addition to collinear singularities there are other possible sources of anomalous 
contributions 

• Multiparticle singularities which occur when linear combinations e.g. p4+p5+p6 of 
external momenta become null. However these are of the form      and so don’t 
contribute.

• Apparent singularities when e.g. p4+p5 is any linear combination of p3 and p6. These are 
in fact not physical and cancel when all terms are combined -- these are so-called 
“spurious” singularities. 

• We calculate                        and find

with the same deformation as found previously. Similarly we calculate                       and find

again with the same deformation as found from MHV amplitudes. 

[Drummond, Henn, 
Korchemsky,Sokatchev]

An,k AMHV
n = An,2, AMHV

n = An,n−2

J0An,k + J+An−1,k + J−An−1,k−1 + J+−An−2,k−1 = 0

ANMHV
6 = AMHV

6 (1
2R146 + cyclic)

Rpqr = cpqrδ
(4)(Ξpqr) ,

cpqr =
〈q − 1, q〉〈r − 1, r〉

x2
qr〈p|xprxrq−1|q − 1〉〈p|xprxrq|q〉〈p|xpqxqr−1|r − 1〉〈p|xpqxqr|r〉 ,

ΞA
pqr = −〈p|

[
xpqxqr

r−1∑

i=p

|i〉ηA
i + xprxrq

q−1∑

i=p

|i〉ηA
i

]
.

11

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z

12

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z and (S0)aAANMHV
6 and find

(S0)ANMHV
6 + S−AMHV

5 = 0

i.e.

(S0)A6,3 + S−A5,2 = 0

12

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z and (S0)aAANMHV
6 and find

(S0)ANMHV
6 + S−AMHV

5 = 0

i.e.

(S0)A6,3 + S−A5,2 = 0

12

i.e.

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z and (S0)aAANMHV
6 and find

(S0)ANMHV
6 + S−AMHV

5 = 0

i.e.

(S0)A6,3 + S−A5,2 = 0

12

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z and (S0)aAANMHV
6 and find (S̄0)A

ȧ ANMHV
6

(S0)ANMHV
6 + S−AMHV

5 = 0

i.e.

(S0)A6,3 + S−A5,2 = 0

12

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z and (S0)aAANMHV
6 and find (S̄0)A

ȧ ANMHV
6

(S0)ANMHV
6 + S−AMHV

5 = 0

i.e.

(S0)A6,3 + S−A5,2 = 0

(S̄0)ANMHV
6 + S̄+ANMHV

5 = 0 i.e. (S̄0)A6,3 + S̄+A5,3 = 0

12



Constraints on amplitudes

• The        ‘s that appear in the six-point NMHV amplitudes are dual superconformal invariants 
(i.e. their form is fixed by the symmetries).  This dependence is shared by all NMHV 
amplitudes 

i.e. they are sums of dual conformal invariants, however the coefficients of the invariants are 
not fixed by the symmetries. 

• Demonstrating the universality of the deformations of the symmetry generators requires 
that the coefficients take specific values. That is to say, it is only for these specific values that 
the collinear limits are correct and the spurious singularities are absent so that the deformed 
symmetry generators annihilate the amplitudes. 

• We can turn this around and argue that demanding that the NMHV amplitudes are invariant 
w.r.t. the deformed generators constrains the coefficients of the dual superconformal 
invariants.   

• Korchemsky & Sokatchev have recently shown that the tree-level amplitudes while not fixed 
by superconformal symmetries, dual or otherwise, are indeed uniquely determined by the 
collinear limits and/or the absence of spurious singularities. 

• In the language of this talk that is to say that the tree level amplitudes are exactly fixed by 
the exact symmetries.

An,k AMHV
n = An,2, AMHV

n = An,n−2

J0An,k + J+An−1,k + J−An−1,k−1 + J+−An−2,k−1 = 0

ANMHV
6 = AMHV

6 (1
2R146 + cyclic)

Rpqr = cpqrδ
(4)(Ξpqr) ,

cpqr =
〈q − 1, q〉〈r − 1, r〉

x2
qr〈p|xprxrq−1|q − 1〉〈p|xprxrq|q〉〈p|xpqxqr−1|r − 1〉〈p|xpqxqr|r〉 ,

ΞA
pqr = −〈p|

[
xpqxqr

r−1∑

i=p

|i〉ηA
i + xprxrq

q−1∑

i=p

|i〉ηA
i

]
.

11

ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

12



• To show that all amplitudes are annihilated by the deformed generators we consider the 
collinear behaviour as 

and with the redefinitions

Assume that amplitude scales as

with similar scaling in all other collinear limits and no other contributions to the anomalous 
action of the generators. With these assumptions it is straightforward to show that the       
and       cancel all the anomalous terms for all the amplitudes. One can conveniently show 
the above scaling inductively by making use of the BCFW recursion relations in the 
superspace formalism. 

Essentially demonstrating the known universality of splitting functions via the BCFW 
relations.    (See also Drummond & Henn)

λ1 → eiφλ sinα, λ2 → λ cos α

and the redefinitions

η1 = η′ cos α + e−iφη sinα, η2 = η cos α− eiφη′ sinα.

We postulate that a generic amplitude scales as

An,k(Λ1, . . . ,Λn)|1||2 =
e−iφ sec α csc α

〈12〉 An−1,k(Λ, Λ3, . . . ,Λn)

+
eiφ sec α csc α

[n1]
δ(4)(η′)An−1,k−1(Λ, Λ3, . . . ,Λn)

+ finite terms,
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ANMHV
n = AMHV

n

[1
n

∑

p,q,r∈Sn

Rpqr

]

∑
pi and 1

z̄z and (S0)aAANMHV
6 and find (S̄0)A

ȧ ANMHV
6

(S0)ANMHV
6 + S−AMHV

5 = 0

i.e.

(S0)A6,3 + S−A5,2 = 0

(S̄0)ANMHV
6 + S̄+ANMHV

5 = 0 i.e. (S̄0)A6,3 + S̄+A5,3 = 0

12

λ1 ∼ λ sinα η1 ∼ η sinα + η′ cos α

λ2 ∼ λ cos α η2 ∼ η cos α− η′ sinα

(
S̄+

)B
ȧ = 2π2

∫
dΛ4|4d4η′dα εȧċλ̄

ċ
1η

B
2 Tr[Ĵ(Λ1),J(Λ2)]J̌(Λ)

S̄0AMHV
n + S̄+AMHV

n−1 = 0

or in terms of the all amplitude generating functional (and to leading

9

We postulate that a generic amplitude scales as

An,k(Λ1, . . . ,Λn)|1||2 =
e−iφ sec α csc α

〈12〉 An−1,k(Λ, Λ3, . . . ,Λn)

+
eiφ sec α csc α

[12]
δ(4)(η′)An−1,k−1(Λ, Λ3, . . . ,Λn)
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Universal collinear limits from BCFW

=

∑ ∑

∑

∑ ∑

k
j

r

s
s+1

r+1

2
1

1 & 2 are collinear legs 

j & k are shifted legs 

When both collinear legs are on AL we find the correct scaling by assumption. Similarly when 
both collinear legs are on AR . When the legs lie on different partial amplitudes there is no 
singularity and the term is subleading in the scaling limit. 

AL AR

One can see the absence of spurious singularities by changing the shifted legs and noting that the 
singularities in individual terms change. 



Closure of the algebra
• The deformed generators essentially combine the knowledge of the free symmetries with the 

analytic behaviour of the amplitudes in collinear limits.  It is non-trivial whether this deformed 
representation respects the algebra i.e. whether the algebra closes.

• E.g. Consider the anti-commutator

• Calculate,                                       ,  the action of the commutator on a source (projected 
onto the part with a definite scaling weight under phase shifts of the arguments).

• Need to make use of vanishing of the central charge

• Find that 

which has the form of a field dependent gauge transformation                            . Thus we 
define the generator of gauge transformations

and we find that

i.e. the algebra closes up to gauge transformations. The other non-trivial (anti)-commutators 
are similar.

{SaA,SbB} = 0

14

{SaA,SbB} = 0

{(S0)(aA, (S−)bB)}Ĵ(Λ)

CĴ = 0 i.e. (λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ) = 0

14

{SaA,SbB} = 0

{(S0)(aA, (S−)bB)}Ĵ(Λ) = π2εac[∂A∂BĴ(0), Ĵ(Λ)]

CĴ = 0 i.e. (λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ) = 0

14

{SaA,SbB} = 0

{(S0)(aA, (S−)bB)}Ĵ(Λ) = π2εac[∂A∂BĴ(0), Ĵ(Λ)]

CĴ = 0 i.e. (λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ) = 0

Ĵ(Λ) "→ [X, Ĵ(Λ)]

14

{SaA,SbB} = 0

{(S0)(aA, (S−)bB)}Ĵ(Λ) = π2εac[∂A∂BĴ(0), Ĵ(Λ)]

CĴ = 0 i.e. (λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ) = 0

Ĵ(Λ) "→ [X, Ĵ(Λ)]

G[X] = π2

∫
d4|4 Tr([X, J(λ)]J̌(Λ))
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CĴ = 0 i.e. (λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ) = 0

Ĵ(Λ) "→ [X, Ĵ(Λ)]

G[X] = π2

∫
d4|4 Tr([X, J(λ)]J̌(Λ))

{SaA,SbB} = εacG[∂A∂BJ(0)]

14

{SaA,SbB} = 0

{(S0)(aA, (S−)bB)}Ĵ(Λ) = π2εac[∂A∂BĴ(0), Ĵ(Λ)]

CĴ = 0 i.e. (λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ = 0

Ĵ(Λ) "→ [X, Ĵ(Λ)]

G[X] = π2

∫
d4|4 Tr([X, J(λ)]J̌(Λ))

{SaA,SbB} = εacG[∂A∂BJ(0)]

paȧ

paȧ = λaλ̃ȧ

λ̃ = +λ̄

λa "→ eiϕλa, λ̄ȧ "→ e−iϕλ̄ȧ

14



Holomorphic anomaly
• The holomorphic anomaly has played an interesting earlier role in the study of tree level and 

one-loop N = 4 SYM scattering amplitudes. [Cachazo, Svrček,Witten]

• Amplitudes show interesting behaviour in twistor space which can be analyzed by studying the 
differential equations that they obey e.g collinearity, where amplitudes consist of sums of terms 
where all gluons lie on a union of straight lines, corresponds to being annihilated by operator

• CWS analyzed the unitarity cut of one-loop diagrams and showed that it is necessary to 
include the effect of the holomorphic anomaly to correctly interpret the differential 
equations; this should also be true for full amplitude because of cut constructibility. See 
also [Bena, Bern, Kosower & Roiban]. (Perhaps interestingly the collinearity operator appears to be 
related to the action of      on tree level amplitudes. [Korchemsky&Sokatchev]) 

• Can use the holomorphic anomaly to efficiently evaluate unitarity cuts of one-loop 
amplitudes of certain classes of amplitudes e.g. one can write generic one-loop 
amplitude as a linear combination of box integrals with unknown coefficients. By acting 
on the imaginary parts of these integrals as well as the cuts of amplitudes one can 
determine some of the coefficients of the scalar box integrals for MHV and NMHV 
amplitudes. [Cachazo] [Britto,Cachazo,Feng]

Fijk = 〈ij〉
∂

∂λ̄k

+ 〈jk〉
∂

∂λ̄i

+ 〈ki〉
∂

∂λ̄j

S̄



Conclusions & Outlook
Tree level scattering amplitudes are almost invariant under superconformal 
transformations. Singular limits involving collinear momenta result in violations 
of this invariance which requires modifying the generators. 

Corrected generators are dynamical i.e they change the number of external 
legs. Strong similarities with spin chain pictures of local operators.  

The deformed generators still satisfy the unmodified superconformal algebra. 

Symmetries, collinear limits and absence of spurious singularities fix uniquely 
the tree-level scattering amplitudes. 

Extend to higher loops - start with one-loop!

What about Yangian symmetries/dual superconformal symmetries?

What about other signatures, twistor space description?

Can we determine both the divergent and finite pieces of scattering amplitudes 
for all orders in coupling?

Can we similarly use symmetries to constrain amplitudes in N = 8 sugra? E7(7) 
generators?



Done!
Thank You!



Extra Slides



More about dual conformal invariants

• Explicit form of the 6-point function

• Generic form of the dual conformal invariants 

Now we want to consider the action of S on this amplitude and specifically the anomaly
contribution coming from the action of ∂ on 1/λ̄ terms in the Rpqr terms. As always one
can use cyclicity to consider a specific leg, for concreteness we consider the λ̄6 terms.
There are several different possible contributions to the anomaly terms:

1. from singularities that occur from multi-particle singularities when linear combi-
nations of momenta such as (p5 + p4 + p6) become null. These singularities are of
the form λ6λ̃6 and so do not contribute to the anomaly.

2. from singularities of the form 〈3|x46|6] which occur when p4 + p5 is any linear
combination of p3 and p6. In fact these singularities are spurious and cancel when
we consider the full amplitude as can be explicitly seen in e.g. [53, 54, 20, 22]. For
a recent discussion of these singularities in the twistor space approach see [11].

3. Collinear singularities due to [56] type terms.

It is this last class that actually gives rise to the relevant physical singularities gen-
erating the anomaly terms and that we will consider. For completeness the complete R
terms are

1

2
(R146 + R251 + R362) =

1

2

[
〈34〉〈56〉〈61〉〈45〉

x2
14〈1|x14|4]〈3|x36|6][45][56]

δ4 (η4[56] + η5[64] + η6[45])

+
〈45〉〈61〉〈12〉〈56〉

x2
25〈2|x25|5]〈4|x42|1][56][61]

δ4 (η5[61] + η6[15] + η1[56])

+
〈56〉〈12〉〈23〉〈61〉

x2
36〈3|x36|6]〈5|x53|2][61][12]

δ4 (η6[12] + η1[26] + η2[61])

]

(5.8)

and the anomaly term from the [61] denominator factors in the second and third lines,
and from the [56] terms in the first and second lines give

(S0)aBANMHV
6 =

π

2

∫ 6∏

k=1

d4|4Λk Tr([J6, ∂1BJ1]J2J3J4J5)

δ4(P6)δ8(Q6)

〈12〉〈23〉〈34〉〈45〉〈56〉δ
2(〈61〉)εabλ

b
6

[
〈45〉〈56〉〈12〉

x2
25〈2|x35|5]〈4|x42|1][56]

δ4(η6[15] + η1[56])

+
〈56〉〈12〉〈23〉

x2
36〈3|x46|6]〈5|x53|2][12]

δ4(η6[12] + η1[26])

]
. (5.9)

Using manipulations identical to previous sections this can be rewritten as

(S0)aBANMHV
6 = 2π2

∫ 5∏

k=2

d4|4Λkd
4|4Λ′

1dαd4η′ δ4(P ′
5)δ

8(Q′
5)

〈1′2〉〈23〉〈34〉〈45〉〈51′〉δ
4(η′)εabλ

b
6

× Tr([Ĵ(λ6, η6),
∂

∂ηB
1

J(λ1, η1)]J2J3J4J5) , (5.10)
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This gives rise to the pattern of relations shown in Figure 7 whereby a given amplitude
is related to higher point amplitudes by the action of the deformed generators. As we
have seen explicitly in the cases of MHV or MHV amplitudes the anomalous terms arise
from collinear singularities seen by J0 which are then in turn removed by J+ or J− as
appropriate. In fact it is well known that the collinear behaviour is governed by the
universal splitting functions and so we expect that the action of the deformed generators
is easily extended to the most general case. There are contributions from other kinematic
singularities which in principle need to be considered however none of these turn out to
be relevant for the action of the generators. We start our discussion with the concrete
example of the six-point NMHV amplitude which as we will see has, in addition to the
collinear singularities, mutiparticle poles as well as apparent “spurious” (non-adjacent)
singularities which are non-physical and merely due to the methods for deriving the
expressions.

5.1 Six-Point NMHV Amplitudes

For the case, A6,3 = ANMHV
6 , that is to say, of six-point NMHV amplitudes, we expect

that the action of S on the amplitude should be given by,

S0A
NMHV
6 + S−AMHV

5 = 0 , (5.2)

where in particular we note that the generator relates the six-point NMHV amplitude
to the five-point MHV. We follow [39] (see also Appendix A for relevant definitions) and
write the six point NMHV amplitude as

ANMHV
6 = AMHV

6 (1
2R146 + cyclic) (5.3)

where there are several representations of R146. One that is particularly useful is

R146 = c146δ
4(Ξ146) (5.4)

where

c146 =
〈34〉〈56〉

x2
14〈1|x14|4]〈3|x36|6](〈45〉〈61〉)3[45][56]

,

ΞA
146 = 〈61〉〈45〉(ηA

4 [56] + ηA
5 [64] + ηA

6 [45]) , (5.5)

which is a specific example (after a little manipulation) of the general formula

Rpqr = cpqrδ
4(Ξpqr) ,

cpqr =
〈q − 1, q〉〈r − 1, r〉

x2
qr〈p|xprxrq−1|q − 1〉〈p|xprxrq|q〉〈p|xpqxqr−1|r − 1〉〈p|xpqxqr|r〉

,

ΞA
pqr = −〈p|

[
xpqxqr

r−1∑

i=p

|i〉ηA
i + xprxrq

q−1∑

i=p

|i〉ηA
i

]
. (5.6)

ANMHV
n = AMHV

n

[ 1

n

∑

p,q,r∈Sn

Rpqr (5.7)
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Cusp from integrability


