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Solving a 4d gauge theory is hard

o Expectation is that for N=4 SYM the AdS/CFT correspondence

provides us with means to do so

- reduces the problem to solving a 2d qgft: GS string in AdS5><S5

What would we expect to get:

In

spectrum of dimensions

correlation functions of gauge-invariant operators
expectation values of Wilson loops

scattering amplitudes

string language:

spectrum of states and the corresponding vertex operators
correlation functions of vertex operators
partition functions in presence of minimal surfaces

And then... on to QCD



The plan

= GS string in AdSgxS®

= A review of long operators

= Organization of flat space string states in AdS5><S5 multiplets
m Structure of corrections to E of quantum strings; approaches

m Semiclassical approach: small circular strings and small folded
strings vs. states in Konishi multiplet

= Summary



String theory in AdSgxS?

. . SO(2,4) ., SO(6) -
Bosonic string: coset model on SO(1.4) X SO(5) symmetric space
Superstring: generalized supercoset model on SOP(ki%i%g%m with
WZ term and k-symmetry Metsaev, Tseytlin

= Constructed ito left-invariant 1-forms J = ¢ tdg = H+Q1+P+Q>
VvV

" Action: T = —— P = ns;; + bsy

S T / d%c [n“bPan + EaleaQQb]
— T/d20 [nabﬁaXAabXBGAB + P76 (D(w, F(S))O)J T 0(94)]

2d Lorentz-invariant

PSU(2,2|4) invariant

conformally invariant to 2-loops; expected to all orders

fix k-symmetry: need bosonic background (pointlike or extended)
— light-cone or gauges adapted to solution



T he spectral problem

gauge theory operators and string states are organized in represen-

: (- : — AL
tations of PSU(2,2|4) — (E; S1,52; J1,J2,J3) = A[pl,q,pQ](SL’SR)

Principles of comparison: identify SO(4) x SO(6) quantum numbers
of operators and string states

> additional insight needed, since there are many states with the
same global quantum numbers

> there exist “‘quantum numbers’ which do not have immediate
relation between gauge and string theory

string energies = dimensions of local Tr (...) operators

E(W\ C,m,..) = A\ C,m,...) C=(Sq,855; J1,J2,J3)

m stands for other quantum numbers



Good understanding of long operators
Asymptotic Bethe Ansatz (ABA) Beisert, Eden, Staudacher
= Firmly established; tested to 4/2 loops at weak/strong coupling

String theory tests — in semiclassical regime; states with large quan-
tum numbers, dual to operators with large classical dimension

Various limits: S = VS, J = V)T
Berenstein, Maldacena, Nastase

(i) “Fast strings” — locally BPS Frolov, Tseytlin
Beisert, Minahan, Staudacher, Zarembo

GT: J>1 & fixed S/J ST: J>1 & fixed §/J
E=S+J+3mm) +3ha(S,m) + .. + ..

(ii) “Slow long strings” — long non-BPS Gubser, Klebanov, Polyakov
GT:InS>J>1 ST:InS>»>J > 1 & J-fixed
E=S+f\)nsS ; fO>1) =aVr+...; fO<K1) =ciA+...

Belitsky, Gorsky, Korchemsky
Frolov, Tirziu, Tseytlin; RR, Tseytlin

GT:InS>J>1 & j = J/InS-fixed ST: InS>J>1 & ¢=7J/InS-fixed

(iii) “Fast long strings”



Important example of long operators: Tr[cbDchb]
= Dual to spinning strings

= S — oo solution becomes homogeneous; folds reach boundary
E=S5 from massless endpoints

E—-S~ g InS from stretching of string
= Semiclassical limit

A>1 & S=8/V\fixed & §>1

VvV ai an
E=S4+f(A)InS+ .. f(>\>>1)=7[1—|—ﬁ—|—(\/x)2—|—...}
an, — from Feynman graphs of GS superstring in AdS5><S5
ag =1 Gubser, Klebanov, Polyakov
a1 = —3In?2 Frolov, Tseytlin; Frolov, Tirziu, Tseytlin
a>» = — K RR, Tseytlin; RR, Tirziu, Tseytlin

e For S=4 it is among the simplest string states

small spin analysis Tirziu, Tseytlin



general ‘‘short” operators «+—— general (quantum) string states

¢ Integrability-based results, based on improving ABA

n “Luscher Correctlons” Ambjorn, Kristjansen, Janik

Bajnok, Janik, Lukowski, Bajnok, Hegedus, Janik, LukowskKi
= ABA — TBA Arutyunov, Frolov
= TBA in Y variables Gromov, Kazakov, Vieira

Bombardelli, Fioravanti, Tateo

o Aim here:
m Structure of the corrections to E for general states

= evaluate leading 1/\/X correction to the dimension of ‘“lightest”
massive string state dual to Konishi operator

¢ In general: need better handle on quantum AdS5><S5 superstring



Organization of string states

» T x V) — oo: AdSg5xS? is nearly flat
— expect that some features of the flat space spectrum survive

1 y
= flat space spectrum: —p° = m? = 4(27T)(n — 1) with n = 5(N + N)
m states: best constructed in light-cone gauge
e n=1: |0)= (8, 8:)%2 — IIB supergravity multiplet; 28 states

> organize in SO(9) representations
(44[) _I_ 84[) _I_ 128f)®2 = ([27 07 O) O] _I_ [07 Oa 17 O] _I_ [17 07 Oa 1])®2

> all states have same mass and form a single susy multiplet

e AdSsxS>background: lifts degeneracy



String spectrum in AdSsxS>:

e PSU(2,2|4) symmetry — (long) multiplets AE
[k7p7Q](SL’SR)

> highest weight states have SO(6) x SO(4) labels: [k,p, q](SLasR)

Remarkably, flat-space string spectrum can be reorganized in mul-
tiplets of SO(2,4) x SO(6) C PSU(2,2|4) Bianchi, Morales, Samtleben

SO(9)—S50(4) x SO(5)—S0(4) x SO(6) C SO(2,4) x SO(6)

n = 2 excited string level: same SO(4) x SO(6) content as the
Konishi multiplet:

T1=01+Q+QAQ+..)[0,0,0] o
> tensor with scalar spherical harmonics [0, J, 0] g gy — full KK tower

@

Hy, = Z [O,J, O](O,O) X Tl
J=0
eassume nonintersection principle Polyakov

Konishi multiplet «+—— n = 2 excited level
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Approaches to computation of corrections to E of quantum strings:

(i) vertex operator approach:

Construct classical vertex operators; use AdS5><S5 string sigma
model perturbation theory to find leading terms in their anomalous
dimensions; diagonalize Polyakov; Tseytlin

(ii) “light-cone” quantization approach:

Use light-cone gauge AdS5><S5 string action and compute correc-

tions to energy of Fock states Metsaev, Thorn, Tseytlin
Berenstein, Maldacena, Nastase; Arutyunov, Frolov, Plefka, Zamaklar

(iii) semiclassical:

Identify short string state as small-charge limit of semiclassical string
state; expected structure of strong-coupling corrections to short
operators Frolov, Tseytlin; Tirziu, Tseytlin

(iv) space-time effective action approach:

Use near-flat-space expansion and NSR vertex operators to recon-
struct 1/\5 corrections to massive string state equation of motion;
spontaneous symmetry breaking in effective action Burrington, Liu



Structure of the expansion RR, Tseytlin

= “Short” strings + weak curvature — mass insensitive to curvature
to leading order

E(W\C) = 2vn— I\V4 4+ Z /\W

T T Corrections from e.q.
diagonalization of 2d
anom. dim. matrix

flat space



Structure of the expansion RR, Tseytlin

= “Short” strings + weak curvature — mass insensitive to curvature
to leading order

E(ﬁ, C) = 2vn— I)L/4 + Z % — g(an) 4 g(nan)
] k=0
I nT kzz:l (VA)F
b b
= M/ 2ovn— 1+ =2 3 ]

TR T

g(han) _— 2k+1 _ ¢ ‘|‘—2+-..
ot 2 k=T

= F(@M): corrections to 2d anomalous dimension/string masses

« p(nan). potential origin in diagonalization of 2d anomalous di-
mension matrix; semiclassically — 2d light modes



= flat space

1
2 =190 =2n— ﬁ(Ez —p2)

= AdS5xS® (E?Z - p?) — some quadratic combination of charges

1 1
2 = yoq = 2n—2—\/X[E(E-|-CL1)-|-0L2E‘|'GJ3J(J‘|‘@4)+CL5] +0 (ﬁ)

= consistent with differential operator interpretation of ~o4

/
[2 —2n + %VQ + o/ (1R + cxFsF5) + O(O/Q)] v =0



e Supersymmetry constraints: C = (E; sz, sr;p1,9,p2) = (E,C)

_ b2 1/4[ — . b
E(VX, Q) [bo+ﬁ+...]+x 2v/ 1+\/X+"'

€,C) = Q40,C) and [D,Ql =3Q ; D¢, C) = E(0)|¢,C)
— E(0) = % + E(0) holds both at weak and at strong coupling
— bg IS A = 0 dimension up to ¢-independent shift: bg = bg + Ag

» Vertex operator language: marginality condition

E? —2(bg+ Ag)E + (bg + Ag)® —4by =4(n — 1)VA+ O (\%)

6
1 P ~ 1
= generally: 2=4(n-1) — —— E - uapCACE + E vaCt 4+ he | +0 <_>
2V (A,B_l A \/X2

¢ most coefficients vanish or expressed ito (universal) hg and ho

bo = -2+ 2(ha —ho—1) b1 = :£(ha —ho— 1)% — 2ho



Semiclassical approach

= Standard expansion: A > 1 & J = % =fixed
J 1
EF=F(—,V)) =V E —&
(ﬁ,f) VAE(T) + 1<J)+ﬁ 2(J) +

m [f 7 <K 1, each coefficient is expandable in J
€, = VT (agk + a1, T + apT” + ..) + S,Enan)
génan) — COk —|— Clkj —|—

= If all terms were known, one could resum, use J =
fix J and re-expand at large A\

as0J? + a11J + ago

(V)2

S

a10J + ap1

VA

c11J + co2

o)

& the first k terms in semiclassical expansion determine the (ﬁ)_’f
term in short string expansion

+ + ...| 4+ g(nan)

E=\/VXJ [aoo +

gnan) — ¢, + + ...




String in flat space at 1st excited level:

= A classical solution

i(t+0)

i(t—0o)

Xeg =x1+ 10 = a e Xy =23+ 1T4 = a e

E = \/4(2xT) J J = a2(2xT)

= Promote to quantum state: only a_1 is excited — vertex operator

- _ A N E?
1B | (OxpDxa) 3 (9%yBxy) % + ] | =21+ >~ 2)

= Level matching: J1=Jo=J — E = \/4(27TT)(J—1)

o J1 = Jo = J = 2 corresponds to the 1st excited level

both planes in S° 2,0,2]0.0) = (0,0;2,2,0)
o embed in AdSsxS®:both planes in AdSs [0,0,0]2,0) = (2,2;0,0,0)
one plane each [0,2,0](11) = (2,0;2,0,0)



Jy = Jo in S°

R*— S° defn'd X7+ ...+ X2 = 1: string on small sphere inside S°:

X1+ iXo=a ei(T_l'a), X3+4+1X4=a e(7=0)

X5 —I— iX6 = \/1 — 20,2, t = KT Frolov, Tseytlin
J=0=R=d,  E=r"=4J<2

[different branch of (unstable) circular string with 7 > 1/2 with Eg = /X + J? ]

Remarkably, exact Ejp is just as in flat space

Eg = VAE = \4V\T | J=V\T

o interpret as quantum state: shift J— J — 1 (cf. flat space lim)

= perform this shift in quantum corrections as well



1-loop quantum string correction to the energy:
= sum of bosonic and fermionic frequencies or path integral

> Bosons (2 massless 4+ massive):

AdSs . 4Xx w2 —n2—|—4j

n —

S5 1x w2i=n244(1—J)+2/4(1 - )2+ 472
2

2X wgizn
>~ Fermions:
2 _ 2 2
4x wii=n?+14+T+\/a1 -T2 +4g

o Correction to energy:

1 oo
Br=_ Y |awn+2n+ (ng +wn) - 4l +wl)

NnN——0oo

= good UV convergence; expand in small J and do sums
potential nonanalyticity in J for n = 0,4+1,4+2, e.g.

Qo=—-44+8VT -2 -2T°-T>+...



However, nonanalyticity cancels out and

B = [7 -2 +8@)NT3 + .|

(nan) 7
nan
Eq =0
1
E=FEy+ E =2\/\/XJ[1+—+...]
0 1 W5
1
= NO \T)\ present; expect remains this way when 2-loops are included

= interpolate to small J = J; = Jp, correct flat space limit: J+— J—1
= for J = J; = Jp =2 itis level-2 massive string state in [2,0,2] g o
Konishi descendants in this rep for Ag =2 + % = 4,0,8
> in flat space it appears in Q4Q%|0) — suggests £ =4, Ay =4
— b1 = 1 and bg = —4; expect b, = 0, bz contains ((3)

— dual operator is Tr [[¢1,¢2]2}



S1 =S5 in AdS®

R* —AdS® defn'd as —Y2 - Y§+ Y+ ...+ Y2 = -1

Yo +iYs = \/1 i o2 ikt Y1 4+ iYs =17 ei(wT—I—o) Ya+iYy =7 ei(wT—a)

1
r=Sinhpo:Zf<c2 w?=14+k°=14+45-88%2+ ...
1
S1=8=S=V\S Szzf@? K241
2kS
Eo = VA & Eo =K+ 12
K2 1

curvature corrections

S 352 S3
Eg = 2\/VAS [1+ﬁ_ ) —I—O<W>]

¢ quantum state in flat space limit (fixed S, A — o0): shift S — S—1

¢ Similarly to J; = Jo state, has £ = 4 in flat space lim.

— expect by =1 and bg = -4



1-loop quantum string correction to the energy:
= sum of bosonic and fermionic frequencies or path integral

> Bosons (2 massless 4+ massive):

AdSy: 2X w% = n?

AdSs . 4x wg - clwi —l—CQCd,,% +c3=0, ¢y =—-8— 10k2 — 3n?
co = 16 + 40k2 + 24k* + 8k2n? 4 3n?
c3 = —n?(n? —4)(n? — 4 — 2k2)

S°: 5x w,,%i=n2

> Fermions:
4 x i—n + 1+ mQ:I:\/4’n, —|—/<, —|—3n2/<;2—|-/£

o Correction to energy:

Ei=— ) [571 - wg ) + w(2) -+ w(3) 4(w£+ + wf;_)

= UV convergent; expand at small S; isolate low-lying modes



E@ = S+ 0(53%?)
EMML o4 0(S)

T

from n =0,+1,£2 modes

o leading term in E(NaN) js an artifact of representing Eq in terms of
characteristic frequencies. In a path integral/determinant approach
it is absent. Adopt this approach.



E@ = S+ 0(53%?)
EMML o4 0(S)

1
E = Ey4 By = 2V [1+ 2+0(—>+0(7

= interpolate to small § = 51 = S5, correct flat spacelim: S+— S—1

» for S =51 = Sy = 2 it is level-2 massive string state in [0, O, O](Q,O)

analogous solution exists in [0, 0, 0] 2
Konishi descendants in this rep for Ag =2+ 5 =4,8

> in flat space it appears in Q4Q%|0) — suggests £ =4, Ag =4
— b1 = 1 and bg = —4,; expect bp, = 0 after 2-loops

— dual operator is Tr [[D1_|_7;2,D3_|_7;4]2]



S = J in AdSgxS?>

= put together the previous two solutions:
Yo+ iYs = 1412 et | Y] + iV = W)
Xi4+iXo=a 9  Xz4iX,=11-d2.

= EOM and Virasoro constraints

w? =k24+1
(14 7))k = r2(w? + 1) + 2a° :>/<:=J\/1—|—28—1—|—28
S 2 2 _ 7 4 2

=rcw =a

= (Classical energy:
[ /xS 552 §3

¢ quantum state in flat space limit (fixed S, A — o0): shift S — S—1

¢ Similarly to J; = Jo state, has £ = 4 in flat space lim.

— expect by =1 and bg = -4



1-loop quantum string correction to the energy:

= Adopt path integral approach for all modes

1 /OO do & InPB(w,n,S)
2k 27 Pr(w,n,S)

NnN——oo

Ey
Py = (w0 —n)%(w +m)[(w —n)? ~ 4(1 — 8)|[? ~n?+ 3(1 — 45 — Y1+ 85)|°
X [(w—n)[(w+n)2 — 4]+ (3-85-3y1488)w— (1 — m)n}

Pp = [w? = (n+ 1)?]° [w® — (n — 1))
X [[w2 —(n+1D?3w? = (n—1)?]+ (1 —3w? + 4wn + nQ)S} + O(S?)

= n=0,+1,4+2 may contribute to Egnan); analyze separately

= O(S)

/OO dv Pp(w,—1,5)Pp(w,0,5) Pp(w, +1,5)
—o0 27 PF(W,—].,S)PF(W,O,S)PF(M,—I—].,S)

— No leading order non-analyticity! E{"®") = O(%)



= Extract leading O(S1/2) analytic term in Ey

S
— expand in § and integrate: it vanishes — F1 = O (ﬁ)

= nterpolate to small S = J; correct flat space Iim: S+— S —1

1 —
B2 =2(S+J - 2)

- (S—-1)
E=2/VX(s-1) |1+ N +O<—)]+O<7

= for S=J =2t is level-2 massive string state in [0,2,0]; 1)
Konishi descendants in this rep for Ag =2+ % = 4(1),6(3),8(1)

> in flat space it appears in Q4Q%|0) — suggests £ =4, Ay =4

— b1 = 1 and bg = —4,; expect b, = 0 after 2-loops



Other solutions: folded strings

efFolded string in AdS: counterpart of
25 §=4

o 2a/
which is the semiclassical version of state on the leading Regge
trajectory with si-E? =2(S —2) and V = e~ #F((axdx)%/? 4 ...)

t = KT, X1 =x1 +1txp = aSino e'T Eqat =

00lWw
Hl=

S— S2 S
+O()|+2+0(%)

E = Ey+ E; = V2VAS [1+ 5 =

= correct flat space Iimit: S— S —2

= for S =4t is level-2 massive string state in [0, 0, 0] (3 o)

_oy1/4[; 1 1 1
E =2\ [1+2ﬁ+0(/\>]+2+0(ﬁ)

unique Konishi descendants in this rep for Ag =2 4 £ = 6(1)
0 2

¢ consistent with bg = —4 and 6; =1



e folded string in S°

2)+3
VA

= J =4 corresponds to 1st excited level in rep [0,4,0] o)

-I—O(—) +2+ O(+ )

1
E = Eq+ Ey = \/2VA(J-2) [1 48U

uniqgue Konishi descendants in this rep for Ag =2 + % = 6(1)

¢ consistent with bg = —-4 and b =1

e folded string with 2 spins S = J: cancellation of quantum cor-
rections to analytic part; flat space limit S+— S —1

(S—1)
E=2VA(s-1) |14+~ S +O(—> +2+0(7

= S =2 corresponds to 1st excited level in rep [0,2,0]; 1)
Konishi descendants in this rep for Ag =2+ 4 = 4(1),6(3),8(1)
¢ symmetry and analogy w/ circular strings: choose Ag =6

consistent with bg = -4 and b =1



Summary or, what does it all mean

= argued that, if interpolation of semiclassical results to small charges
holds, the strong coupling dimension of Konishi multiplet is

E=2X"Y*"4 (Do —4)+ 5+ O3/

1/4

for Ao = 6 it is also a solution of E(E —4) = 4V/A+ 0+ O )

bo and by are rational and b3 is transcendental

conjectured that b, vanishes; shift+ series in A(2k+1)/4: ¢(3) € by

3 circular strings at Ag = 4; 3 folded strings at Ag = 6,
latter on Regge trajectory

differs from result from TBA in Y variables in SL(2) sector

+ o(\=3/%)

Gromoyv, Kazakov, Vieira

=24+ (A9 - 4) + 1/4

How many can be correct?



Both: issues with interpretation

> TBA/Y and continuation of semiclassical results describe differ-
ent operators at same string level (e.g. slightly different KK modes)

> interpolation to small charges does not yield E but corrections
to mass. Then

E(E —p)+q= E2

Principle determining p and q?

One: interpolation of semiclassical results (or some other manipu-
lations) is not trustworthy

e.g. for circular strings J+— J—1: what if J— J—14+ 0N 1)

e.g. exponentially small corrections become important

None?



Summary or, what does it all mean

= argued that, if interpolation of semiclassical results to small charges
holds, the strong coupling dimension of Konishi multiplet is

E=2\*+ (Do —4) + 7+ 03

1/4

for Ao = 6 it is also a solution of E(E —4) = 4V/A+ 0+ O )

bo and by are rational and b3 is transcendental

conjectured that b, vanishes; shift+ series in A(2k+1)/4: ¢(3) € by

3 circular strings at Ag = 4; 3 folded strings at Ag = 6,
latter on Regge trajectory

differs from result from TBA in Y variables in SL(2) sector

+ o(\=3/%)

Gromoyv, Kazakov, Vieira

=24+ (A9 - 4) + 1/4

A better understanding of GS string in AdS5><S5 appears necessary



