
CONFORMAL SIGMA MODELS

ON SUPER TARGETS AND

LATTICE MODELS

H. Saleur

Based on works with C. Candu, J. Jacobsen, T. Quella,

V. Mitev, N. Read, V. Schomerus

Started with N. Read, HS, ”Exact spectra of conformal

supersymmetric nonlinear sigma models in two dimen-

sions”, hep-th/0106124

. . .

C. Candu, T. Quella, V. Mitev, HS and V. Schomerus,

”The principal chiral field on projective superspace”,

to appear.

1



BACKGROUND

• Target space supersymmetry (dating back to Parisi

Sourlas) appears in several important problems of con-

densed matter. Some these are (roughly, in order of

difficulty):

? Polymers, percolation, trees

? Random bond Ising model

? Spin quantum Hall effect

? Ordinary quantum Hall effect

• Some of the things we we would like to know (roughly,

in order of difficulty)

? The possible types of CFTs

? The associated critical exponents

? Some information about the OPEs (logarithms?), the

four point functions (probabilistic interpretations)

? Stability of fixed points and RG flows
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• So the archetype of the problem we are facing is:

which CFT does the U(1,1|2)/U(1|1)× U(1|1)

sigma model at θ = π flow to?

• Why is this so difficult?

? Strong non unitarity issues: logarithmic CFTs with

indecomposable representations of chiral algebras

? and probably left/right indecomposability

? Continuous group symmetry does not imply Kac Moody

symmetry any longer

? Strong non unitarity issues: probabilities p < 0 or

p > 1 appear in S matrix approaches

• More fundamentally maybe: the space of CFTs is

very difficult to map out, and integrable cases seem

less generic than for non super targets.

• Lattice models have been particularly useful in un-

derstanding:

? Algebraic features

? the space of CFTs
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THE LATTICE MODELS: GENERALITIES

• In Euclidian space, the models carry representations

of SU(m + 2n|2n) or OSp(m + 2n|2n) on every edge.

Simplest cases: alternate � and �̄ for SU , take funda-

mental everywhere for OSp.

Think of transfer matrices propagating vertically

x
y

• The choice of alternating representations in the SU

case means that the edges carry a fixed orientation (see

Chalker Coddington model for IQHE transition):
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In the hamiltonian limit we get H acting on
(
�⊗ �̄

)⊗2L

• In the ordinary (non super) case, the integrable chain

based on pure � and the alternating one all flow to

the SU WZW theory. In the super case, only the alter-

nating chain has a conformal invariant limit, which is

again a WZW theory. In the integrable case, � and �̄
can be passed through each other, and the geometry

is not very meaningful.

• While interesting, the WZW models are not what we

are after. So our models will not be given by the usual

solutions of the Yang Baxter equation
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ALGEBRA

•We start with SU(m). We take 2L sites labelled i = 0,

. . . , 2L− 1. With odd sites associate the � of SU(m)

and with even sites �̄. Use a bosonic representation

with vector space Vi
∼= Cm at each site.

Represent states using bai , b
†
ia for i even, bia, b

a†
i for

i odd, with [bai , b
†
jb] = δijδ

a
b (a, b = 1, . . . , m), and

similarly for i odd. The spaces Vi are defined by the

constraints

b
†
iab

a
i = 1 (i even),

b
a†
i bia = 1 (i odd)

of one boson per site. Generators of U(m) (or in fact

of glm) acting in the spaces Vi are Jbia = b
†
iab

b
i for i

even, Jbia = −bb†i bia for i odd. The global glm algebra

Jba =
∑
i J

b
ia, acts in the tensor product V =

(
�⊗ �̄

)L
.

• SU(m)-invariant nearest-neighbor coupling in the chain

is unique, up to additive and multiplicative constants:

usual “Heisenberg coupling” of magnetism, can be writ-

ten in terms of operators Ei
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Ei =

 b
a†
i+1b

†
iab

b
ibi+1,b, i even,

b
a†
i b
†
i+1,ab

b
i+1bib, i odd.

The Ei’s are Hermitian, E†i = Ei. Acting in the con-

strained space V , they satisfy

E2
i = mEi,

EiEi±1Ei = Ei,

EiEj = Ej Ei (j 6= i, i± 1).

which define the Temperley Lieb algebra TLN(m).

• Relations have well known graphical interpretation:

Transfer matrices propagating along the (1,1) direc-

tion of the square lattice can be written in terms of

elementary vertex interactions

T ≡ t1t3 · · · t2L−3t0t2 · · · t2L−2,

witht t = 1 + xe.
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By taking either of the two terms in ti for each ver-

tex in the graph, an expansion in terms space-filling

loops is obtained with corresponding coefficients for

each vertex, and a factor m for each loop.

• Generalize to the SU(m + n|n) case. Each site now

carries a Z2-graded vector space of dimensions m+n for

the even (bosonic), n for the odd (fermionic), subspace

(n ≥ 0 is an integer) ≡ the fundamental of the Lie

superalgebra gl(m + n|n) for i even, and its dual for i

odd. The chain is the graded tensor product of these

Vi. It may be constructed using fermion operators in

addition to the boson operators as in the n = 0 special

case.

For i even: boson operators bai , b†ia, [bai , b
†
jb] = δijδ

a
b (a,

b = 1, . . . , n + m), and fermion operators fαi , f
†
iα,

{fαi , f
†
jβ} = δijδ

α
β (α, β = 1, . . . , n). For i odd, we

have similarly boson operators bia, b
a†
i , [bia, b

b†
j ] = δijδ

b
a

(a, b = 1, . . . , n+m), and fermion operators f iα, f
α†
i ,

{f iα, f
β†
j } = −δijδ

β
α (α, β = 1, . . . , n).
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The minus sign implies that the norm-square of any

two states that are mapped onto each other by the

action of a single f iα or f
α†
i have opposite signs, and

the “Hilbert” space has an indefinite inner product.

The space V is now defined as the subspace of states

that obey the constraints∑
a
b
†
iab

a
i +

∑
α
f
†
iαf

α
i = 1 (i even),∑

a
b
a†
i bia −

∑
α
f
α†
i f iα = 1 (i odd).

The generators of the Lie superalgebra gl(m + n|n)

acting on each site of the chain are the bilinear forms

Jbia = b
†
iab

b
i, f

†
iαf

β
i , b†iaf

β
i , f†iαb

b
i for i even, and similarly

for i odd.

• The TL generators are constructed similarly. When

signs are properly handled, one gets a representation

of the same algebra where each loop gets a factor (n+

m) −m = str 1 = m ( the evaluation of contributions

for each loop can be viewed in terms of states in V

flowing around the loop).
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• Of course additional interactions can be added. For

three neighbors, apart from EiEi+1 +Ei+1Ei, we have

Pi,i+2:

The resulting algebra is called Walled Brauer.

• A similar construction is possible for OSp(m+2n|2n).

Since

V ⊗ V = 1 + Sym + Antisym O(m)

Going over steps similar to SU(m) we now have three

possible interactions in the chain, hence we must add

to the algebra Pi,i+1 ≡ Pi
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giving the Brauer algebra. When expanding the parti-

tion function, configurations will look generically as

• All this is for open boundary conditions. The periodic

case involves affine versions of these algebras.
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WHY INSIST ON LATTICE ALGEBRAS

• Indecomposability is difficult to tackle within the

CFTs, especially when it mixes Vir ⊗ Vir. Meanwhile,

the study of non semi-simple associative algebras is

somewhat more advanced in the math literature (and

involves issues of wilderness).

• The general conjecture that the structure of the chain

(as a bimodule) under

(extended) superalgebra ⊗ commutant

”carries over” to the continuum limit seems to hold. It

involves the fact that the lattice algebras are cellular,

and finer statements about Morita equivalence.

• Let us illustrate this by some examples. For the

SU(2) XXX chain we have the following kind of struc-

ture:
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and in the continuum limit it becomes

so the current algebra ”joins the dots”.
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Let us now compare with the OSp(4|2) chain, where

we have for instance (the exact shape depends on the

”type” of representation)

The conjecture is in this case that all states in this

diagram belong to a unique indecomposable represen-

tation of some chiral algebra (with the same Jordan cell

structures), and have conformal weights that differ by

integers. This applies directly to the OSp(4|2)/OSp(3|2)

sigma model, irrespective of g2
σ.

Whenever indecomposability appears, it seems to be

in some sense maximal, involving projective represen-

tations.
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• Even if the models are not derived from Yang Baxter,

the spectrum of H can often be determined block by

block using other representations of the same under-

lying algebra that belong to Yang Baxter models (e.g.

Temperley Lieb → XXZ).

• A lot of information can be gained about fusion as

well through induction on the lattice L × L′ ↪→ L +

L′ (LCFT community: Pearce Rasmussen, Gaberdiel

Runkel, Ridout Kitola).

• New symmetries show up, which are variants of Yan-

gians (Read HS).
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THE SIGMA MODEL ON CPm−1|m

• Coherent state quantization: describe spins via a path

integral. For SU(2), (antiferromagnetic) interactions

and large spin limit → O(3) = SU(2)/U(1) sigma

model at θ = 2πs + bare coupling constant g2
σ ∝ 1

s
+ flow to large coupling. Physics is described by the

s = 1
2 XXX antiferromagnetic spin chain, and thus the

SU(2)1 WZW model.

SU(m + n|n) and alternating reps (antiferromagnetic)

→ U(n + m|n)/U(1) × U(n + m − 1|n) or CPn+m−1|n

model at θ = π.

• Fields : complex components za (a = 1, . . . , n+m),

ζα (α = 1, . . . , n), with za(ζα) commuting (anticom-

muting). Constraint: z
†
az
a + ζ

†
αζ
α = 1 modulo U(1)

phase transformations za 7→ eiBza, ζα 7→ eiBζα. La-

grangian density:

L =
1

2g2
σ

[
(Dµz

†
aD
†
µz
a +Dµζ

†
αD
†
µζ
α
]

+
iθ

2π
(∂µaν − ∂νaµ)

where aµ (µ = 1, 2):

aµ =
i

2
[z†a∂µz

a + ζ†α∂µζ
α − (∂z†a)za − (∂ζ†α)ζα],
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• Coupling constants: g2
σ ( target = supersymmetric

space), and θ mod. 2π.

• β function:

dg2
σ

dl
= β(g2

σ) = mg4
σ +O(g6

σ)

For m = 0 is vanishes to leading order. But β function

is independent of n, and for n = 1 CP0|1 = symplectic

fermions

L =
1

2g2
σ
∂µζ
†∂µζ

where g2
σ is redundant. Thus β = 0 to all orders!

→ conformal sigma model (keep θ = π for now, more

about topological angle later) ≡ non abelian extension

of symplectic fermions.

Now what?: spectrum of the boundary theory

for Neumann boundary conditions (volume filling branes)
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• g2
σ → 0 limit:

• Spectrum at finite g2
σ:

Θ1,2 = θ + 2πν(µ) Dirac monopole term (ν, µ number

of ‘edge states’)
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• Quasi abelian evolution of weights. For free boson:

∆
g2
σ

Φ = ∆0
Φ + f(g2

σ)q2

where q is U(1) charge. For CP1|2 we have strong

arguments that

∆
g2
σ

Φ = ∆0
Φ + f(g2

σ)C(2)
Φ

where C
(2)
Φ is quadratic Casimir (Bershadsky et al.,

Candu HS, Mitev et al.).

• Study of lattice model. First, blocks under Brauer⊗
gl(2|2) are made of reps. with the same Casimir

• Numerics:

H = −
2L∑
j=1

Ej + w
2L−2∑
j=1

Pi,i+2 +Hbdry

acting on �⊗µ ⊗ (�⊗ �̄)⊗L ⊗ �̄⊗ν. For instance
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where 2l legs = invariant symmetric tensor of rank 2l.

• All orders perturbative calculations.

Note: there are no observable instanton effects. Role

of θ still a bit unclear.
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CONCLUSIONS AND OPEN PROBLEMS

• Similar results can be obtained for OSp(2n+1|2n)
OSp(2n|2n) [Candu,

HS; Mitev, Quella, Schomerus]. In this case there is a

WZW point at g2
σ = 1. Is there such a point here? (eg

psu(n|n) at level 1?)

• Casimir algebras ?

• The periodic case ?

• Geometrical applications:

61 2 43 5

• Integrability?
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