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In the last 15 years it become clear that the gauge theory dynamics
in the vacuum sector is related to quantum many-body systems.

Quantum many body system ⇔ topological gauge theory ⇔
supersymmetric vacuum sector of SUSY gauge theory.

A classic example:

The system of N free non-relativistic fermions on a circle

m

2d pure Yang-Mills theory with gauge group U(N)

m

SUSY vacuum sector of a (deformation of)N = 2
super-Yang-Mills theory in 2d. Witten ’92

Also describes (Witten ’92) the intersection theory on moduli
space of flat connections on a 2d Riemann surface Σg, F (A) = 0.

k →∞ limit of Gauged WZWk (Verlinde formula).
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A bit more complicated example MNS ’97; GS ’07, ’08:

N -particle Yang system on circle

m

2d YMH theory with gauge group U(N)

m

SUSY vacuum sector of a (deformed) 2d N = 2 theory, softly
broken N = 4, U(N) theory with massive adjoint matter

Yang system - N -particle sector for the quantum Nonlinear
Schrödinger equation (NLS), N non-relativistic particles on S1:

H = −
N∑
i=1

∂2

∂xi
2 + c

∑
i 6=j

δ(xi − xj)
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YMH describes the U(1)-equivariant intersection theory on the
moduli space of solutions to Hitchin’s equations on Σg:

Fzz̄(A)− [Φz,Φz̄] = 0;

∇z(A)Φz̄ = 0; ∇z̄(A)Φz = 0

U(1) action:
Φz → eiαΦz; Φz̄,→ e−iαΦz̄

Space of solutions, modulo gauge transformations, is isomorphic to

Fzz̄(A+ iΦ) = 0

modulo complexified gauge transformations GC .

Equivariant parameter enters as invariant mass term Lc = −cΦzΦz̄

and for c→∞ gives previous example - free fermion point.

k →∞ limit of Gauged WZWk, for GC .
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The correspondence turns out to be much more general (NS ’08):

For every quantum integrable system, solved by BA, there is a
SUSY gauge theory with 4 Q′s:

a) exact Bethe eigenstates correspond to SUSY vacua,

b) ring of commuting Hamiltonians ⇔ (twisted) chiral ring.

Guiding observation: supersymmetric vacuum equations in gauge
theory coincide with the Bethe equations in the integrable theory.

Vacua - critical points of effective twisted superpotential W̃ eff (σ)

Bethe equations - spectrum, critical points of Yang’s function Y (λ)

The effective twisted superpotential corresponds to Yang function

W̃ eff (σ) = Y (λ) ; σi = λi; G = U(N)

VEV of chiral ring operators Ok ⇔ eigenvalues of Hamiltonians:

< σ|Ok|σ >= Ek(λ) : HkΨ(λ) = Ek(λ)Ψ(λ)
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Explicit details worked out = gauge theories identified, for:

• XXX spin chain - 2d gauge theory

• XXZ spin chain - 3d gauge theory on R2 × S1

• XY Z spin chain - 4d gauge theory on R2 × T 2

• Arbitrary spin group, representation, impurities, limiting models

• NLS, Yang system of N -particles on S1 - 2d N = 4 +...

• Periodic Toda - 4d pure N = 2 theory on R2 ×R2
ε

• Elliptic Calogero-Moser - 4d N = 2∗ theory (N = 2 with
massive hypermultiplet) on R2 ×R2

ε
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ε

• Elliptic Calogero-Moser - 4d N = 2∗ theory (N = 2 with
massive hypermultiplet) on R2 ×R2
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N = 2 in 2d

N = 2 supersymmetry algebra in 2d has four generators which are
the components of the two Dirac spinors: Q+, Q−, Q̄+, Q̄−

{Q±, Q̄±} = 2(H ± P )

Q2
± = 0, Q̄2

± = 0

Q†+ = Q̄+, Q†− = Q̄−

The basic super-multiplets (4 θ’s in superspace, correspond to 4

θ’s in 4d N = 1 language - θ+ = θ1, θ− = θ2, θ̄+ = θ1̇, θ̄− = θ2̇)):

X: Q, Q̃,Φ - chiral multiplets, matter - (charged) complext scalar:

Q - fundamental, Q̃ - anti-fundamental, and Φ - adjoint.

V - vector multiplet: gauge field, complex adjoint scalar.

Σ - the twisted chiral multiplets: adjoint complex scalar, gauge
field strength: Σ = D+D̄−V .
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Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2xd4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2xdθ+dθ− W (X)

F̃ :
∫

d2xdθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)

F :
∫

d2xdθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2x dθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2x dθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2x dθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2x dθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2x dθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Supersymmetric Lagrangian is sum of following terms:

D :
∫

d2x d4θ

(
− 1

4e2
tr ΣΣ̄ +K(eV/2 X , X̄ eV/2)

)
F :

∫
d2x dθ+dθ− W (X)

F̃ :
∫

d2x dθ+dθ̄− W̃ (Σ)

And, twisted mass term: suppose X transforms in some linear
representation R of the gauge group G: R = ⊕ı̄Mı̄⊗Rı̄ - Global
Symmetry group H ⊂ ×ı̄ U(Mı̄)

If a superpotential W is present then H must also preserve it. The
theory can be deformed by twisted masses m̃ - belong to the
complexification of the Lie algebra of the maximal torus of H:

m̃ = (m̃ı̄) , m̃ı̄ ∈ End (Mı̄)

Some mi break N = 4 to N = 2 (iu), some don’t (µ). One can
not turn on these unless there is some global symmetry unbroken.



Superpotential W (X) and global symmetries

Superpotential W (X) may break the global group -
Hmax = ×iU(Mi) might be reduced to some interesting subgroup.

In 2d, 3d and 4d, with gauge group U(N), Nf = Nf = L

fundamental and anti-fundamental chiral supermultiplets Qa, Q̃
a,

and one adjoint Φ one can have a superpotential containing
complex masses:

WQ̃ΦQ =
∑
a,b

Q̃bma
b (Φ)Qa

For Nf = Nf this 2d theory is ultraviolet finite and (later)
corresponds to interesting quantum integrable systems.

This superpotential breaks Hmax = U(L)× U(L)× U(1) global
group.
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However, if the matrix-valued function mb
a(Φ) is chosen in a

special way:

ma
b (Φ) = δab$a Φ2sa , a, b = 1, . . . , L

WQ̃ΦQ =
L∑
a=1

$a Q̃
aΦ2saQa

for some complex constants $a, we have the unbroken group
U(1)L × U(1) of the transformations:

Qa 7→ e−iαa−isaβ Qa , Q̃
a 7→ eiαa−isaβ Q̃a , Φ 7→ eiβΦ

In this case we can turn on, in addition to the superpotential the
twisted masses for the fields Q̃,Q and even for Φ :

Q̃a : m̃ = +µa−isau, Qa : m̃ = −µa−isau, Φ : m̃ = +iu
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We can add the θ-term for each U(1) component of gauge group
θa
∫
trF a. One can promote complexified θ-term (which includes

also FI-term r) to background superfield:

Σ′a :
∫
d2xdθ+θ̄−[Σ′a tr Σa]

Σ′a = (
θa
2π

+ ira) + ...

Generic twisted masses - all matter fields are massive, can be
integrated out and get N = 2 gauge theory with an infinite number
of interaction terms in the Lagrangian; high derivative terms
suppressed by the inverse masses of the fields we integrated out.

In addition there are other massive fields which can be integrated
out on the Coulomb branch. These are the g/t-components (g -
Lie algebra corresponding to Lie group G, t - its Cartan
sub-algebra) of the vector multiplets, the W -bosons ...
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Of all terms in effective Lagrangian the twisted F -terms, i.e. the
effective twisted superpotential W̃ eff(Σ)⇔ W̃ eff(σ + ...), can be
computed exactly - receives only one-loop contributions.
Effective theory is abelian with field content of pure N = 2:

W̃ eff(σ) = W̃ eff
matter(σ) + W̃ eff

gauge(σ)

W̃ eff(σ) = −
∑
b

2πitbtrbσ + trR (σ + m̃) (log (σ + m̃)− 1)−

− 2π < ρ, σ >, tb =
θb
2π

+ irb, ρ =
1
2

∑
α∈∆+

α

For each U(1) factor in G - we introduced a FI term r and θ-angle.

Only dW̃ eff(σ) enters in effective Lagrangian L.
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Lift to 3d on S1 and 4d on T 2

One can consider a 3d supersymmetric gauge theory which when
reduced to 2d on S1 gives above 2d theories.

• All fields depend on extra periodic coordinate coordinate y.
Since the translations in y is the global symmetry we can turn on
the corresponding twisted mass m̃ from 2d point of view, which
are in fact momentum n KK mode masses: m̃n = i nR .

• For zero radius KK modes are infinitely massive, we get our 2d
theory back. For finite radius - sum up contribution of KK modes.

• Effective twisted superpotential of 2d theory is easy to compute.

Similarly one can lift the theory to 4d - N = 1 theory on T 2. Here
one can turn on background gauge fields, background B-fields etc.
which will reduce to the parameters of the 2d theory when
integrated over T 2 - twisted masses, theta terms, etc.

Again, one can write the explicit formula for effective twisted
superpotential in 2d.
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Supersymmetric vacua of N = 2 theories

For any N = 2 theory we can write Hamiltonian as (in the absence
of central extentions):

{QA, Q†A} = {QB, Q†B} = 4H

QA = Q+ + Q̄−; Q†A = Q− + Q̄+; Q2
A = 0

QB = Q+ +Q−; Q†B = Q̄+ + Q̄−; Q2
B = 0

SUSY vacua are annihilated by H. Instead of solving the hard
problem of finding the exact vacuum state one can first address a
simpler question of finding the vacuum state up to some
ambiguity, such as the QA-exact states.

Than true vacuum state will be a particular, “harmonic”,
representative in this cohomology.
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If |0 > is some state in vacuum and Oi is in QA cohomology, so is
|i >= Oi|0 >. Operator-state correspondence would relate the
complete basis for vacuum states |i > to operators from
cohomology Oi.

This operators form a commutative ring called chiral ring:

OiOj |0 >= ckijOk|0 >; ⇒ OiOj = ckijOk + {Q, ...}

The A-type chiral ring is the set of operators which commute with
QA, considered up to the QA-operators. Similarly one defines
Ā-type chiral ring, B-type chiral ring, B̄-type chiral ring.

Chiral ring generators - Ok = trσk.

SUSY vacua form the representation of chiral ring. Basically, for
every N = 2 theory there is a quantum integrable system
(assuming all good conditions like discrete specturm of vacua etc.)
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We described a very large class of N = 2 SUSY Lagrangians in 2d
(3d, 4d). What are correspoding quantum integrable systems
describing SUSY vacua?

After all massive fields are integrated out the chiral ring generators
are invariant functions on Coulomb branch, functions of
Σ = σ + ....

SUSY vacua - we need to minimize the potential on Coulomb
branch.

Suppose we have the theory with the effective twisted
superpotential W̃ eff(σ);σ =

(
σi
)r
i=1

parameterize the Coulomb
branch (the complexification of the Lie algebra t = LieT of the
unbroken gauge group T, which is abelian).
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The corresponding potential term in the action is:

1
4πi

r∑
i=1

(H i + iF i01

) ∂W̃ eff

∂σi
+
(
H i − iF i01

) ∂ ˜̄W
eff

∂σ̄i


+

1
2

r∑
i,j=1

gij
(
H iHj + F i01F

j
01

)
gij - the matrix of (inverse squared) gauge couplings, H i - the

auxiliary fields in the vector mutliplets V i, and F i = dAi of the i’th
U(1) factor in the unbroken gauge group on the Coulomb branch.

The target space of the effective sigma model is disconnected, with
~n labeling the connected components (gauge flux quantization):

U~n =
1
2

gij
(
−2πini +

∂W̃
eff

∂σi

)+2πinj +
∂ ˜̄W

eff

∂σ̄j


1

2πi
∂W̃ eff(σ)
∂σi

= ni; exp

(
∂W̃ eff(σ)
∂σi

)
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Examples

1. CPN model - most well-known example: N + 1 chiral
multiplets (charge + 1), and U(1) gauge group:

σN+1 = q; q = e2πit

2. N = 2∗ theory. G - one of the classical Lie groups, say U(N);

R = C ⊗ g, i.e. the chiral superfield in adjoint representation - Φ.

In the absence of the twisted mass term this is the N = 4 theory,
the dimensional reduction of the 4d pure N = 2.

Global symmetry H = U(1): Φ→ eiαΦ; turn on a twisted mass iu

W̃ eff(σ) =
N∑

i,j=1

(σi − σj + iu) (log (σi − σj + iu)− 1)−

−
N∑
i=1

2πi(t+ i− 1
2

(N + 1))σi
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N∏
j=1

σi − σj + iu

σi − σj − iu
= (−1)Nq

This equation has no solutions for N > 2, or for N = 1, q 6= 1 and
has a valley of solutions for N = 1, q = 1.

3. Hitchin case: YMH corresponds to this theory with the tree
level twisted superpotential:

W̃ (σ) =
τ

2
trσ2

which corresponds to the two-observable representing the Kähler

form on the Hitchin’s moduli space MH , O
(2)

W̃
↔ ωMH

. This leads
to the change in the right hand side of vacuum equation:

N∏
j=1

σi − σj + iu

σi − σj − iu
= e2πiτσi

and one now gets solutions for σi’s for all N .



N∏
j=1

σi − σj + iu

σi − σj − iu
= (−1)Nq

This equation has no solutions for N > 2, or for N = 1, q 6= 1 and
has a valley of solutions for N = 1, q = 1.

3. Hitchin case: YMH corresponds to this theory with the tree
level twisted superpotential:

W̃ (σ) =
τ

2
trσ2

which corresponds to the two-observable representing the Kähler

form on the Hitchin’s moduli space MH , O
(2)

W̃
↔ ωMH

. This leads
to the change in the right hand side of vacuum equation:

N∏
j=1

σi − σj + iu

σi − σj − iu
= e2πiτσi

and one now gets solutions for σi’s for all N .



N∏
j=1

σi − σj + iu

σi − σj − iu
= (−1)Nq

This equation has no solutions for N > 2, or for N = 1, q 6= 1 and
has a valley of solutions for N = 1, q = 1.

3. Hitchin case: YMH corresponds to this theory with the tree
level twisted superpotential:

W̃ (σ) =
τ

2
trσ2

which corresponds to the two-observable representing the Kähler

form on the Hitchin’s moduli space MH , O
(2)

W̃
↔ ωMH

. This leads
to the change in the right hand side of vacuum equation:

N∏
j=1

σi − σj + iu

σi − σj − iu
= e2πiτσi

and one now gets solutions for σi’s for all N .



N∏
j=1

σi − σj + iu

σi − σj − iu
= (−1)Nq

This equation has no solutions for N > 2, or for N = 1, q 6= 1 and
has a valley of solutions for N = 1, q = 1.

3. Hitchin case: YMH corresponds to this theory with the tree
level twisted superpotential:

W̃ (σ) =
τ

2
trσ2

which corresponds to the two-observable representing the Kähler

form on the Hitchin’s moduli space MH , O
(2)

W̃
↔ ωMH

. This leads
to the change in the right hand side of vacuum equation:

N∏
j=1

σi − σj + iu

σi − σj − iu
= e2πiτσi

and one now gets solutions for σi’s for all N .



N∏
j=1

σi − σj + iu

σi − σj − iu
= (−1)Nq

This equation has no solutions for N > 2, or for N = 1, q 6= 1 and
has a valley of solutions for N = 1, q = 1.

3. Hitchin case: YMH corresponds to this theory with the tree
level twisted superpotential:

W̃ (σ) =
τ

2
trσ2

which corresponds to the two-observable representing the Kähler

form on the Hitchin’s moduli space MH , O
(2)

W̃
↔ ωMH

. This leads
to the change in the right hand side of vacuum equation:

N∏
j=1

σi − σj + iu

σi − σj − iu
= e2πiτσi

and one now gets solutions for σi’s for all N .



N∏
j=1

σi − σj + iu

σi − σj − iu
= (−1)Nq

This equation has no solutions for N > 2, or for N = 1, q 6= 1 and
has a valley of solutions for N = 1, q = 1.

3. Hitchin case: YMH corresponds to this theory with the tree
level twisted superpotential:

W̃ (σ) =
τ

2
trσ2

which corresponds to the two-observable representing the Kähler

form on the Hitchin’s moduli space MH , O
(2)

W̃
↔ ωMH

. This leads
to the change in the right hand side of vacuum equation:

N∏
j=1

σi − σj + iu

σi − σj − iu
= e2πiτσi

and one now gets solutions for σi’s for all N .



The Main example: Q̃ΦQ theory - XXXs

Gauge group G = U(N)

L fundamental chiral multiplets Qa,

L anti-fundamental chiral multiplets Q̃a

One adjoint chiral multiplet Φ.

This matter content corresponds to the gauge theory with
extended supersymmetry, N = 4, which the dimensional reduction
of the four dimensional N = 2 theory.

The adjoint Φ is a part of the vector multiplet in 4d, while chiral
fundamental and anti-fundamentals combine into hypermultiplet in
the fundamental representation. We are dealing, therefore, with
the matter content of the four dimensional N = 2 theory with
Nc = N , Nf = L.
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Since the gauge group has a center U(1) one can turn on the
Fayet-Illiopoulos term, and the theta angle, which we combine into
a complexified coupling θ 7→ t = θ

2π + ir.

We turn on the twisted masses mf
a for the fundamental chiral fields

Qa, the twisted masses mf̄
a for the anti-fundamental chiral fields

Q̃a, and the twisted mass madj for the adjoint Φ.

W̃Q̃ΦQ =
N∑
i=1

L∑
a=1

[
(
σi +mf

a

)(
log
(
σi +mf

a

)
− 1
)

+

+
(
−σi +mf̄

a

)(
log
(
−σi +mf̄

a

)
− 1
)

]+

+
N∑

i,j=1

(
σi − σj +madj

) (
log
(
σi − σj +madj

)
− 1
)
−

− 2πi
N∑
i=1

(
t+ i− 1

2
(N + 1)

)
σi
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Vacuum equation (shift θ by (L− 1)π):

L∏
a=1

σi +mf
a

σi −mf̄
a

= −e2πit
N∏
j=1

σi − σj +madj

σi − σj −madj

Same equation in invariant form, in terms of order parameter

Q(x) = det(x− σ) =
N∏
i=1

(x− σi) = xN +
N∑
i=1

(−1)NcixN−i

a(x)Q(x−madj) + e2πitd(x)Q(x+madj) = t(x)Q(x)

a(x) =
L∏
a=1

(x−mf̄
a); d(x) =

L∏
a=1

(x+mf
a)

t(x) - an unknown polynomial of degree L.

Turn on superpotential
∑

a$aQ̃
aΦ2saQa discussed above. As

explained before, global symmetry restrict us to:

mf
a = −µa − isau, mf̄

a = +µa − isau, madj = iu

where µa ∈ C, u ∈ C, sa-half-integer.
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Quiver Gauge Theories - XXX, any spin group ...

Consider Ar, Dr, Er Dynkin diagram, to each node associate the
vector space Vi = CNi , attach external leg to each node, associate
vector space Wi = CLi . Gauge theory will have the gauge group:

G = U(N1)× U(N2)× . . .× U(Nr)

If the nodes i and j are connected by a line in the Dynkin diagram
- a pair of chiral multiplets, Bi,j, B̃j,i whose scalar components B̃j,i

belong to Hom(Vi, Vj). Additional chiral multiplets, Qi, Q̃i

correspond to: Qi ∈ Hom(Vi,Wi) , Q̃i ∈ Hom(Wi, Vi). Lastly, in
each node introduce the adjoint chiral superfield Φi.



Quiver Gauge Theories - XXX, any spin group ...

Consider Ar, Dr, Er Dynkin diagram, to each node associate the
vector space Vi = CNi , attach external leg to each node, associate
vector space Wi = CLi . Gauge theory will have the gauge group:

G = U(N1)× U(N2)× . . .× U(Nr)

If the nodes i and j are connected by a line in the Dynkin diagram
- a pair of chiral multiplets, Bi,j, B̃j,i whose scalar components B̃j,i

belong to Hom(Vi, Vj). Additional chiral multiplets, Qi, Q̃i

correspond to: Qi ∈ Hom(Vi,Wi) , Q̃i ∈ Hom(Wi, Vi). Lastly, in
each node introduce the adjoint chiral superfield Φi.



Quiver Gauge Theories - XXX, any spin group ...

Consider Ar, Dr, Er Dynkin diagram, to each node associate the
vector space Vi = CNi , attach external leg to each node, associate
vector space Wi = CLi . Gauge theory will have the gauge group:

G = U(N1)× U(N2)× . . .× U(Nr)

If the nodes i and j are connected by a line in the Dynkin diagram
- a pair of chiral multiplets, Bi,j, B̃j,i whose scalar components B̃j,i

belong to Hom(Vi, Vj). Additional chiral multiplets, Qi, Q̃i

correspond to: Qi ∈ Hom(Vi,Wi) , Q̃i ∈ Hom(Wi, Vi). Lastly, in
each node introduce the adjoint chiral superfield Φi.



Quiver Gauge Theories - XXX, any spin group ...

Consider Ar, Dr, Er Dynkin diagram, to each node associate the
vector space Vi = CNi , attach external leg to each node, associate
vector space Wi = CLi . Gauge theory will have the gauge group:

G = U(N1)× U(N2)× . . .× U(Nr)

If the nodes i and j are connected by a line in the Dynkin diagram
- a pair of chiral multiplets, Bi,j, B̃j,i whose scalar components B̃j,i

belong to Hom(Vi, Vj). Additional chiral multiplets, Qi, Q̃i

correspond to: Qi ∈ Hom(Vi,Wi) , Q̃i ∈ Hom(Wi, Vi). Lastly, in
each node introduce the adjoint chiral superfield Φi.



Quiver Gauge Theories - XXX, any spin group ...

Consider Ar, Dr, Er Dynkin diagram, to each node associate the
vector space Vi = CNi , attach external leg to each node, associate
vector space Wi = CLi . Gauge theory will have the gauge group:

G = U(N1)× U(N2)× . . .× U(Nr)

If the nodes i and j are connected by a line in the Dynkin diagram
- a pair of chiral multiplets, Bi,j, B̃j,i whose scalar components B̃j,i

belong to Hom(Vi, Vj). Additional chiral multiplets, Qi, Q̃i

correspond to: Qi ∈ Hom(Vi,Wi) , Q̃i ∈ Hom(Wi, Vi). Lastly, in
each node introduce the adjoint chiral superfield Φi.



W =
∑
〈i,j〉

trVi

(
Bi,jΦjB̃j,i

)
− trVj

(
B̃j,iΦiBi,j

)
+

r∑
i=1

Li∑
a=1

$i,a

(
Qai Φ2si,a

i Q̃i,a

)

It is convenient to denote the fields B̃, B,Φ collectively by X.
Global symmetry - T = U(1)××ri=1 U(1)Li

Xi,j 7→ e−
1
2
Ciju Xi,j;Qi,a 7→ eiµi,a−isi,auQi,a; Q̃i,a 7→ e−iµi,a−isi,auQ̃i,a

Cij is the Cartan matrix of the corresponding Ar, Dr, Er type:
Cij = 〈αi, αj〉, αi - simple roots of the corresponding Lie algebra.

Thus we can turn on twisted masses: µi,a;u.
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Vacuum equations, from effective twisted superpotentil W̃ eff (σ):

Li∏
a=1

σ
(i)
i − µi,a − isi,au
σ

(i)
i − µi,a + isi,au

= −e2πiti

r∏
j=1

Qj

(
σ

(i)
i −

1
2Ciju

)
Qj

(
σ

(i)
i + 1

2Ciju
)

Qi(x) =
Ni∏
i=1

(x− σ(i)
i )

σ
(i)
i - eigenvalues of scalar in i-th component U(Ni) of gauge

group, i = 1, ..., r; i = 1, ...Ni; a = 1, .., Li.

P−i (x)
∼∏
j

Qj(x+
1
2
Ciju)+e2πitiP+

i (x)
∼∏
j

Qj(x−
1
2
Ciju) = t̂i(x)Qi(x)

P±i (x) =
Li∏
a=1

(x− µi,a ± isi,au)

∏̃
- product over those j’s for which Cij 6= 0. t̂i(x) - polynomials.

Can be lifted to 3d and 4d - trigonometric and elliptic equations.
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4d pure N = 2 and Periodic Toda

Previous examples didn’t have classical, ~→ 0, limit for all other
parameters fixed. Here we study those integrable systems which
have good classical limit, infinite discrete spectrum & finite
size corrections - pToda, eCM.

pToda - the system of N particles q1, ..., qN on the real line:

H2 =
N∑
i=1

p2
i + U(q)

U(q) = Λ2(
N−1∑
i=1

eqi−qi−1 + eqN−q1)

Phase space - T ∗RN , (pi, qi) ∈ R, Ω =
∑N

i dpi ∧ dqi:

Hk =
1
k!

∑
pki + ....; k = 1, ..., N

Algebraic completely integrable system (ACIS)- complexification:
T ∗(C×)N with holomorphic symplectic form Ω2,0 =

∑
dpi ∧ dqi.
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Introduce the Lax operator Φ(z|p, q) - N ×N matrix, and define
above (Poisson commuting) Hamiltonians through:

det(Φ(z)−x) = Λ2Nez+e−z+(−x)N+H1x
N−1+H2x

N−2+...+HN

Spectral curve: Ch ⊂ C × C×;x ∈ C, z ∈ C/2π
√
−1 is defined as

zero locus of characteristic polynomial:

det(Φ(z)− x) = 0

For each value h = (H1, H2, ...,HN ) this is genus N − 1
hyperelliptic curve with two points deleted (points where x =∞).

H−1(h) is given by the product C × Jh . The C-factor
corresponds to the center-of-mass mode

∑
i qi , while the compact

factor Jh = Jac(C̄h) is the Jacobian of the compactied curve C̄h .

Define ai, a
i
D as periods of differential λ = 1

2πxdz for this curve. ai
(or aiD) can serve as action variables for holomorphic symplectic

form; they are dependent -
∑
aiDdai = dF(a)⇒ aiD = ∂F(a)

∂ai
.

F(a) - prepotential for pure N = 2 theory in 4d, defines low
energy effective action in pure N = 2 theory.
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N = 2∗ and Elliptic Calogero-Moser

U(N) 4d N = 2∗ theory is the N = 2 theory with massive adjoint
hypermultiplet; coupling constant - τ = i

g20
+ θ0, mass - m.

Low energy effective theory is described in terms of prepotential
F(a1, ..., aN ; τ,m) which comes from Elliptic Calogero-Moser
(eCM) algebraic completely integrable system.

eCM - N particles q1, q2, ..., qN on the circle of circumference β ,
qi ∼ qi + β , which interact with the pair-wise potential:

U(q) = m2
∑
i<j

P(qi − qj)

P(x) =
∑
n∈Z

1
sinh2(x+ nβ)

= u0(x) +
∞∑
k=1

qkun(x)

q = e−2β; u0 =
1

sinh2x
=
∑
k

ne−kx; uk(x) = 4
∑
d|k

d(edx+e−dx)
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Similar to Periodic Toda - for eCM there is Lax operator:

Φij(p, q; z) = piδij +m
Θ(z + qi − qj)Θ

′
(0)

Θ(qi − qj)Θ(z)
(1− δij)

Θ - odd theta function on the elliptic curve with τ = iβ
π .

β →∞ with Λ2N = m2Nq finite - eCM becomes Periodic Toda.

• Zero locus of characteristic polynomial det(Φ(z)−x) = 0 defines
the spectral curve and ai, a

i
D are periods of differential λ = 1

2πxdz.

• Corresponding F(a) gives prepotential of N = 2∗ gauge theory

< φ >= diag(ai, ..., aN ), F(a) = Fpert(a) + Fnon−pert(a)

Fpert(a; τ,m) =
τ

2

N∑
i=1

a2
i +

3N2m2

2
+

1
4

N∑
i,j=1

[(ai−aj)2log(ai−aj)−

− (ai − aj +m)2log(ai − aj +m)]

Fnon−pert(a; τ,m) =
∞∑
k=1

qkFk(a;m), q = e2πiτ
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Quantization of ACIS ⇔ Deformation of SYM

Suppose we quantize the algebraic integrable system (ε - Planck)

If we chose aDi as our action variables than Born-Sommerfeld:

aDi = ε× ni =
∂F(a)
∂ai

∂Y (a)
∂ai

= ni; Y (a) =
F(a)
ε

This semi-classical picture is very suggestive - Bethe equation:

∂Y (a; ε)
∂ai

= ni

Y (a; ε) - Yang function, thus we look for quantization when
Y (a, ε) comes from one parameter (ε) deformation of prepotential:

Y (a; ε) =
F(a) +O(ε)

ε
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Appearance of prepotential in N = 2 and N = 2∗ suggests, from
our experience in gauge theory ⇔ quantum integrablity: we start
with this 4d SYM, deform it in ε and count the vacua.

These theories have continues spectrum of vacua - “u”-plane.

In order to find discrete spectrum and Y (a; ε) - we need low energy
effective theory to be 2d with superpotential W(a) = Y (a; ε).

In fact we know such theory - 4d gauge theory on R2 ×R2
ε .

2d character of low energy action is best explained, and computed
exactly, in terms of topological gauge theory, which always explains
the vacuum sector precisely.

Our main examples - pToda (pure N = 2) and eCM (N = 2∗).
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N = 2 gauge theory on R2 ×R2
ε is a deformation of N = 2 theory

on R2 ×R2 with one, equivariant, parameter ε which corresponds
to the rotation of second R2 around its origin. Denote
corresponding vector field V = ε(x2∂3 − x3∂2). Bosonic part is:

L =
1
g2

0

(−1
2
trF ? F + Tr(DAφ− iV F ) ? (DAφ̄− iV̄ F )+

+
1
2
Tr([φ, φ̄] + iVDAφ̄+ iV̄DAφ+ iV iV̄ F )2volg) +

θ0

2π
TrF ∧ F

Only 2d (first R2) super-Poincare invariance is unbroken, four Q’s.

This theory has twisted/topological formulation (together with
usual deformation - t1, ..., tN , as in LNS ′97), ε deformation of
Donaldson-Witten, and its abelianization (effective low energy) is
2d gauge theory with four Q’s and superpotential (for N = 2∗):

W (a|t1, ..., tN ;m, ε, τ) =
F(a|t1, ..., tN ;m, τ) +O(ε)

ε

W = Wpert(a|t1, ..., tN ;m, ε, τ) +
∑∞

k=1 q
kWk(a|t1, ..., tN ;m, ε) is

known exactly.
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What is exactly the quantization problem for which this
W (a|t1, ..., tN ;m, ε, τ) gives the Yang function and thus - the
exact spectrum?

∂W (a|t1, ..., tN ;m, ε, τ)
∂ai

= ni

For pToda we replace phase space coordinate pi = ε ∂
∂qi

, write the
eigenvalue problem for all Hamiltonians, parametrize eigenvalues
E1, ..., EN in terms of a1, ..., aN - e. g. for H2:

[ε2
N∑
i=1

∂2

∂qi
2 + Λ2(

N−1∑
i=1

eqi−qi−1 + eqN−q1)]Ψ(q) = E2(a)Ψ(q)

qi,Λ2, ε, ai - complex. We look for symmetric solutions s.t. when
restricted to reals (including ε = −i~) - solution is L2. Spectrum:

Ei(a) =
∂WN=2

∂ti
;

∂WN=2(a|t1, ..., tN ; Λ, ε)
∂ai

= ni
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eCM is a bit more complicated because potential has poles.

Exact statement is again - replace phase space coordinate
pi = ε ∂

∂qi
, write the eigenvalue problem for all Hamiltonians,

parametrize eigenvalues E1, ..., EN in terms of a1, ..., aN - e. g.
for H2 (in notation m2 = ν(ν − ε) and remind q = e2πiτ = e−2β):

[ε2
N∑
i=1

∂2

∂qi
2 + ν(ν − ε)

∑
i<j

P(qi − qj ;β)]Ψ(q) = E2(a)Ψ(q)

qi, ν, β, ε - complex. Look for solutions in affine Weyl chamber
with asympthotics at (qi − qj)→ 0 of Ψ→ (qi − qj)ν (ignore
solution with exponent ν − 1) and extend outside this domain by
symmetry condition with respect to shift in β. Spectrum:

Ei(a) =
∂WN=2∗

∂ti
;

∂WN=2∗(a|t1, ..., tN ; τ,m, ε)
∂ai

= ni

For pToda and eCM these claims are checked in Λ2 and
q-expansion knowing W from SYM exactly for N = 2 and N = 2∗.
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