

Elagenossische Technische Hochschule Zürich Swiss Federal Institute of Technology zurich

From Feynman integrals to the Hopf algebra of multiple polylogarithms

Claude Duhr

Integrability in Gauge and String Theory ETH, Zurich, 22/08/2012

Scattering amplitudes in QFT

- State of the art:
 - ➡ Tree-level: essentially solved (except multi-leg amplitudes).

Scattering amplitudes in QFT

- State of the art:
 - ➡ Tree-level: essentially solved (except multi-leg amplitudes).
 - ➡ One loop:
 - ✓ Integral basis (boxes, triangles, bubbles)
 - \checkmark Essentially solved

Scattering amplitudes in QFT

- State of the art:
 - ➡ Tree-level: essentially solved (except multi-leg amplitudes).
 - One loop:
 - ✓ Integral basis (boxes, triangles, bubbles)
 - \checkmark Essentially solved
 - ➡ Two loops:
 - Two-loop amplitudes in general not known.
 - No two-loop integral basis known.

Multi-loop computations

- Why are multi-loop computations so difficult..?
- Quantities are divergent:
 - → UV & IR divergences.
- Two-loop integrals are generically polylogarithms of weight 4 in many external physical parameters.
 - ➡ multiple polylogarithms.
 - need to evaluate these functions numerically in a fast and efficient way, including all the branch cuts, etc.
 - In other words, polylogarithms and their generalizations are everywhere!
 - ➡ Need to understand these functions!

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc*.
 - → Transcendental functions: a whole zoo was discovered

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc.*
 - Transcendental functions: a whole zoo was discovered
 - ★ (Classical) polylogarithms:

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc*.
 - ➡ Transcendental functions: a whole zoo was discovered
 - ★ (Classical) polylogarithms:
 - ★ Harmonic polylogarithms.

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc.*
 - Transcendental functions: a whole zoo was discovered
 - ★ (Classical) polylogarithms:
 - ★ Harmonic polylogarithms.
 - ★ 2d harmonic polylogarithms.

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc.*
 - Transcendental functions: a whole zoo was discovered
 - ★ (Classical) polylogarithms:
 - ★ Harmonic polylogarithms.
 - ★ 2d harmonic polylogarithms.
 - ★ Cyclotomic harmonic polylogarithms.

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc*.
 - Transcendental functions: a whole zoo was discovered
 - ★ (Classical) polylogarithms:
 - ★ Harmonic polylogarithms.
 - ★ 2d harmonic polylogarithms.
 - ★ Cyclotomic harmonic polylogarithms.
 - ★ All these are just special classes of multiple polylogarithms.

- The final goal is to obtain an expression of the loop integrals in terms of
 - → Transcendental numbers: mutliple zeta values, log 2, *etc*.
 - Transcendental functions: a whole zoo was discovered
 - ★ (Classical) polylogarithms:
 - ★ Harmonic polylogarithms.
 - ★ 2d harmonic polylogarithms.
 - ★ Cyclotomic harmonic polylogarithms.
 - ★ All these are just special classes of multiple polylogarithms.
 - ★ Elliptic functions.

In this talk: will concentrate exclusively on polylogarithms.

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \quad | \quad \text{Li}_n(z) = \int_0^z \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \quad | \quad \text{Li}_n(z) = \int_0^z \frac{dt}{t} \operatorname{Li}_{n-1}(t) dt$$

- All the special functions physicists defined are just special cases thereof:
 - \blacktriangleright (Classical) polylogarithms: $\text{Li}_n(z) = -G(0, \dots, 0, 1; z)$

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \quad | \quad \text{Li}_n(z) = \int_0^z \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

- All the special functions physicists defined are just special cases thereof:
 - \blacktriangleright (Classical) polylogarithms: $\text{Li}_n(z) = -G(0, \dots, 0, 1; z)$
 - → Harmonic polylogarithms: $a_i \in \{-1, 0, 1\}$

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \quad | \quad \text{Li}_n(z) = \int_0^z \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

- All the special functions physicists defined are just special cases thereof:
 - \blacktriangleright (Classical) polylogarithms: $\text{Li}_n(z) = -G(0, \dots, 0, 1; z)$
 - → Harmonic polylogarithms: $a_i \in \{-1, 0, 1\}$
 - ➡ 2d harmonic polylogarithms: e.g., $a_i \in \{0, 1, a\}$

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \quad | \quad \text{Li}_n(z) = \int_0^z \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

- All the special functions physicists defined are just special cases thereof:
 - → (Classical) polylogarithms: $\text{Li}_n(z) = -G(0, ..., 0, 1; z)$
 - → Harmonic polylogarithms: $a_i \in \{-1, 0, 1\}$
 - ➡ 2d harmonic polylogarithms: e.g., $a_i \in \{0, 1, a\}$
 - ➡ Cyclotomic harmonic polylogarithms: roots of unity.

- Even if an amplitude is simple, it might be that our approach to the problem leads to a difficult answer.
- The polylogarithms satisfy various complicated functional equations.
 - The simplicity of the answer might be hidden behind a swath of functional equations.

$$-\text{Li}_2(z) - \ln z \ln(1-z) = \text{Li}_2(1-z) - \frac{\pi^2}{6}$$

• In other words we need to 'control' the functional equations among polylogarithms.

- Polylogarithms have been introduced and studied several centuries ago by Euler, Nielsen, Poincaré,...
 - ➡ 'Mathematics of the 19th century'.

- Polylogarithms have been introduced and studied several centuries ago by Euler, Nielsen, Poincaré,...
 - ➡ 'Mathematics of the 19th century'.
- No! Over the last 20 years polylogarithms were a very active field of research in pure mathematics.
- Mathematicians have discovered very far reaching algebraic structures underlying polylogarithms.

- Polylogarithms have been introduced and studied several centuries ago by Euler, Nielsen, Poincaré,...
 - ➡ 'Mathematics of the 19th century'.
- No! Over the last 20 years polylogarithms were a very active field of research in pure mathematics.
- Mathematicians have discovered very far reaching algebraic structures underlying polylogarithms.
- Obvious question: can this be useful for physics..?
 - → Yes! ... but let's motivate this by an example!

The 'classical' example

- The 'classical' example of this is the six-point amplitude in N=4 Super Yang-Mills.
- By evaluating the individual diagrams one arrives at a very complicated combination of multiple polylogarithms (17 pages),

$$\begin{split} R_{6,WL}^{(2)}(u_1, u_2, u_3) &= (\text{H.1}) \\ \frac{1}{24} \pi^2 G\left(\frac{1}{1-u_1}, \frac{u_2-1}{u_1+u_2-1}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_1}, \frac{1}{u_1+u_2}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_1}, \frac{1}{u_1+u_3}; 1\right) + \\ \frac{1}{24} \pi^2 G\left(\frac{1}{1-u_2}, \frac{u_3-1}{u_2+u_3-1}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_2}, \frac{1}{u_1+u_2}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_2}, \frac{1}{u_2+u_3}; 1\right) + \\ \frac{1}{24} \pi^2 G\left(\frac{1}{1-u_3}, \frac{u_1-1}{u_1+u_3-1}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_3}, \frac{1}{u_1+u_3}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) + \\ \frac{3}{2} G\left(0, 0, \frac{1}{u_1}, \frac{1}{u_1+u_2}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_1}, \frac{1}{u_1+u_3}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) + \\ \frac{3}{2} G\left(0, 0, \frac{1}{u_2}, \frac{1}{u_2+u_3}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_3}, \frac{1}{u_1+u_3}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) - \\ \frac{1}{2} G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_2}; 1\right) + G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_3}; 1\right) + \\ \\ \text{[Del Duca, CD, Smirnov]} \right] \end{split}$$

The 'classical' example

$$R_6^{(2)}(u_1, u_2, u_3) = \sum_{i=1}^3 \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right) \qquad \text{[Goncharov, Spradlin, Vergu, Volovich]} \\ - \frac{1}{8} \left(\sum_{i=1}^3 \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72}$$

$$x_i^{\pm} = u_i x^{\pm}, \ x^{\pm} = \frac{u_1 + u_2 + u_3 - 1 \pm \sqrt{\Delta}}{2u_1 u_2 u_3}, \ \Delta = (u_1 + u_2 + u_3 - 1)^2 - 4u_1 u_2 u_3$$

$$L_4(x^+, x^-) = \frac{1}{8!!} \log(x^+ x^-)^4 + \sum_{m=0}^3 \frac{(-1)^m}{(2m)!!} \log(x^+ x^-)^m (\ell_{4-m}(x^+) + \ell_{4-m}(x^-))$$

$$\ell_n(x) = \frac{1}{2} \left(\operatorname{Li}_n(x) - (-1)^n \operatorname{Li}_n(1/x) \right) \qquad J = \sum_{i=1}^3 \left(\ell_1(x_i^+) - \ell_1(x_i^-) \right)$$

- Could Feynman integrals be simpler than we thought...?
- Long term goal: get to the simple answer (the function) without the 'divide and conquer' strategy.
- In the mean time: gather data, and try to find a way to get the simple answer out of the 'divide and conquer' approach.

- Could Feynman integrals be simpler than we thought...?
- Long term goal: get to the simple answer (the function) without the 'divide and conquer' strategy.
- In the mean time: gather data, and try to find a way to get the simple answer out of the 'divide and conquer' approach.
 - Outline:
 - The Hopf algebra of multiple polylogarithms: combinatorics vs. functional equations.
 - Some examples from physics.

The Hopf algebra of polylogarithms

Combinatorics vs. functional equations

• We usually think of functional equations as complicated relations among special functions arising from complicated changes of variables in some integrals.

$$-\text{Li}_{2}(z) - \ln z \ln(1-z) = \text{Li}_{2}(1-z) - \frac{\pi^{2}}{6}$$
$$\text{Li}_{n}(z) = \int_{0}^{z} \frac{\mathrm{d}t}{t} \operatorname{Li}_{n-1}(t)$$

• We usually think of functional equations as complicated relations among special functions arising from complicated changes of variables in some integrals.

$$-\text{Li}_{2}(z) - \ln z \ln(1-z) = \text{Li}_{2}(1-z) - \frac{\pi^{2}}{6}$$
$$\text{Li}_{n}(z) = \int_{0}^{z} \frac{\mathrm{d}t}{t} \operatorname{Li}_{n-1}(t)$$

• Mathematicians conjecture that all the functional equations among polylogarithms follow from a simple algebraic structure.

• We usually think of functional equations as complicated relations among special functions arising from complicated changes of variables in some integrals.

$$-\text{Li}_{2}(z) - \ln z \ln(1-z) = \text{Li}_{2}(1-z) - \frac{\pi^{2}}{6}$$
$$\text{Li}_{n}(z) = \int_{0}^{z} \frac{\mathrm{d}t}{t} \operatorname{Li}_{n-1}(t)$$

- Mathematicians conjecture that all the functional equations among polylogarithms follow from a simple algebraic structure.
- In other words: All functional equations are pure combinatorics!
 - You do not even need to know the integral in order to derive the relations among them!

• This algebraic structure is called a Hopf algebra

- This algebraic structure is called a Hopf algebra
 - Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).

- This algebraic structure is called a Hopf algebra
 - Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
 - Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).

- This algebraic structure is called a Hopf algebra
 - Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
 - Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).
 - Hopf algebra: Vector space with both multiplication and comultiplication, i.e., one can 'fuse' and 'break apart' in a consistent manner.

- This algebraic structure is called a Hopf algebra
 - Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
 - Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).
 - Hopf algebra: Vector space with both multiplication and comultiplication, i.e., one can 'fuse' and 'break apart' in a consistent manner.
- Mathematical construction quickly gets pretty involved.

- This algebraic structure is called a Hopf algebra
 - Algebra: Vector space with an operation that allows one to 'fuse' two elements into one (multiplication).
 - Coalgebra: Vector space with an operation that allows one to break two elements apart (comultiplication).
 - Hopf algebra: Vector space with both multiplication and comultiplication, i.e., one can 'fuse' and 'break apart' in a consistent manner.
- Mathematical construction quickly gets pretty involved.
 - → I will spend only three slides on the technical details.
 - After that, I will only concentrate on applications and examples.

Algebras and coalgebras

Coalgebras
- Algebras
- 'Two become one'
 - $\mu:\mathcal{A}\otimes\mathcal{A}\to\mathcal{A}$
 - $\mu(a\otimes b)=a\cdot b$

Coalgebras

- Algebras
- 'Two become one'

 $\mu:\mathcal{A}\otimes\mathcal{A}\to\mathcal{A}$

 $\mu(a\otimes b)=a\cdot b$

Coalgebras

→ 'One becomes two'

 $\Delta: \mathcal{C} \to \mathcal{C} \otimes \mathcal{C}$

$$\Delta(a) = \sum_{i} a_i^{(1)} \otimes a_i^{(2)}$$

- Algebras
- 'Two become one'

 $\mu: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ $\mu(a \otimes b) = a \cdot b$

Associativity:
If we iterate,

... $\rightarrow \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ the order in which we do this is immaterial, because $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ Coalgebras

• One becomes two' $\Delta : \mathcal{C} \to \mathcal{C} \otimes \mathcal{C}$ $\Delta(a) = \sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}$

- Algebras
- ➡ 'Two become one'

 $\mu: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ $\mu(a \otimes b) = a \cdot b$

Associativity:
If we iterate,

... $\rightarrow \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ the order in which we do this is immaterial, because $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ Coalgebras

'One becomes two' $\Delta : \mathcal{C} \to \mathcal{C} \otimes \mathcal{C}$ $\Delta(a) = \sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}$ Coassociativity: If we iterate, $\mathcal{C} \to \mathcal{C} \otimes \mathcal{C} \to \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{C} \to \dots$

the order in which we do this is immaterial.

• Example: Take a word, and sum over all possible ways to split it into two ('deconcatenation')

• Example: Take a word, and sum over all possible ways to split it into two ('deconcatenation')

w = abcd

 $\Delta(w) = abcd \otimes 1 + abc \otimes d + ab \otimes cd + a \otimes bcd + 1 \otimes abcd$

- Example: Take a word, and sum over all possible ways to split it into two ('deconcatenation')
 - w = abcd

 $\Delta(w) = abcd \otimes 1 + abc \otimes d + ab \otimes cd + a \otimes bcd + 1 \otimes abcd$

- Next, we iterate this procedure to split the word into three.
- Two choices, e.g,

 $ab \otimes cd \rightarrow (a \otimes b) \otimes cd$ or $ab \otimes cd \rightarrow ab \otimes (c \otimes d)$

- Example: Take a word, and sum over all possible ways to split it into two ('deconcatenation')
 - w = abcd

 $\Delta(w) = abcd \otimes 1 + abc \otimes d + ab \otimes cd + a \otimes bcd + 1 \otimes abcd$

- Next, we iterate this procedure to split the word into three.
- Two choices, e.g, $ab \otimes cd \rightarrow (a \otimes b) \otimes cd$ or $ab \otimes cd \rightarrow ab \otimes (c \otimes d)$
- As long as we sum over all possibilities, it does not matter which way we iterate, and always arrive at the same result.

Hopf algebras

- A Hopf algebra is
 - ➡ an algebra
 - → that is at the same time a coalgebra
 - ➡ such that the product and coproduct are compatible

 $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

 and with an additional structure, the antipode (which we will not use in the following).

Hopf algebras

- A Hopf algebra is
 - ➡ an algebra
 - → that is at the same time a coalgebra
 - ➡ such that the product and coproduct are compatible

 $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

- and with an additional structure, the antipode (which we will not use in the following).
- Goncharov showed that multiple polylogarithms form a Hopf algebra with coproduct

 $\Delta(I(a_0; a_1, \ldots, a_n; a_{n+1}))$

$$= \sum_{0=i_1 < i_2 < \dots < i_k < i_{k+1} = n} I(a_0; a_{i_1}, \dots, a_{i_k}; a_{n+1}) \otimes \left[\prod_{p=0}^k I(a_{i_p}; a_{i_p+1}, \dots, a_{i_{p+1}-1}; a_{i_{p+1}})\right]$$

• How can all this be useful to physicists..?

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.
 - ➡ Can the expression be simplified?

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.

'Li₄'

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.

Too complicated to handle $'Li_4'$

• How can all this be useful to physicists..?

'Li₃ \otimes Li₁'

• Imagine a two-loop multi-scale integral that evaluates to 1000's of Li_4 's.

Too complicated to handle $'Li_4'$

'Li₂ \otimes Li₂'

Break it into pieces

'Li₁ \otimes Li₂'

• How can all this be useful to physicists..?

Too complicated to handle

• Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.

Still too complicated 'Li₃ \otimes Li₁' 'Li₂ \otimes Li₂' Break it into pieces 'Li₁ \otimes Li₁' 'Li₂ \otimes Li₂' 'Li₁ \otimes Li₃'

 Li_{4}

• How can all this be useful to physicists..?

Too complicated to handle

• Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.

 Li_{4}

Break it into pieces

Still too complicated 'Li₃ \otimes Li₁' 'Li₂ \otimes Li₂' 'Li₁ \otimes Li₃'

 $`{\rm Li}_2\otimes{\rm Li}_1\otimes{\rm Li}_1' ~`{\rm Li}_1\otimes{\rm Li}_2\otimes{\rm Li}_1' ~`{\rm Li}_1\otimes{\rm Li}_1\otimes{\rm Li}_2'$

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.

- How can all this be useful to physicists..?
- Imagine a two-loop multi-scale integral that evaluates to 1000's of Li₄'s.

• At the end of this procedure, we have broken everything into little pieces (logarithms = symbol), for which all identities are known.

• We then need to reassemble the pieces to find the simplified expression (This is the most difficult step!)

- At each step information is lost, but in a controlled way:
 - ➡ Can be recovered by going back up one step at the time.

• But there is a problem...

- But there is a problem...
- Putting z=1 in $\Delta(\text{Li}_n(z)) = 1 \otimes \text{Li}_n(z) + \text{Li}_n(z) \otimes 1 + \sum_{k=1}^{n-1} \text{Li}_{n-k}(z) \otimes \frac{\ln^k z}{k!}$ we arrive at
 - $\Delta(\zeta_n) = 1 \otimes \zeta_n + \zeta_n \otimes 1$

('primitive element')

- But there is a problem...
- Putting z=1 in n-1 $\Delta(\mathrm{Li}_n(z)) = 1 \otimes \mathrm{Li}_n(z) + \mathrm{Li}_n(z) \otimes 1 + \sum_{k=1}^{n-1} \mathrm{Li}_{n-k}(z) \otimes \frac{\ln^{\kappa} z}{k!}$ we arrive at ('primitive element') $\Delta(\zeta_n) = 1 \otimes \zeta_n + \zeta_n \otimes 1$ • On the other hand, from $\zeta_4 = \frac{2}{5}\zeta_2^2$ we get $\Delta(\zeta_4) = \frac{2}{5}\Delta(\zeta_2)^2 = \frac{2}{5}[1 \otimes \zeta_2 + \zeta_2 \otimes 1]^2 = \frac{2}{5}[1 \otimes \zeta_2^2 + \zeta_2^2 \otimes 1 + 2\zeta_2 \otimes \zeta_2]$ • So there is a contradiction, unless $\Delta(\zeta_{2n}) = 0$. → This is Goncharov's original construction.

- But there is a problem...
- Putting z=1 in n-1 $\Delta(\mathrm{Li}_n(z)) = 1 \otimes \mathrm{Li}_n(z) + \mathrm{Li}_n(z) \otimes 1 + \sum_{k=1}^{\infty} \mathrm{Li}_{n-k}(z) \otimes \frac{\ln^{\kappa} z}{k!}$ we arrive at ('primitive element') $\Delta(\zeta_n) = 1 \otimes \zeta_n + \zeta_n \otimes 1$ • On the other hand, from $\zeta_4 = \frac{2}{5}\zeta_2^2$ we get $\Delta(\zeta_4) = \frac{2}{5}\Delta(\zeta_2)^2 = \frac{2}{5}[1 \otimes \zeta_2 + \zeta_2 \otimes 1]^2 = \frac{2}{5}[1 \otimes \zeta_2^2 + \zeta_2^2 \otimes 1 + 2\zeta_2 \otimes \zeta_2]$ • So there is a contradiction, unless $\Delta(\zeta_{2n}) = 0$. → This is Goncharov's original construction. • But then, we have not gained much...

• In a recent paper on multiple zeta values, Francis Brown argues that one can also define

$$\Delta(\zeta_{2n}) = \zeta_{2n} \otimes 1$$

• This indeed solves the previous problem

$$\Delta(\zeta_4) = \frac{2}{5}\Delta(\zeta_2)^2 = \frac{2}{5}[\zeta_2 \otimes 1]^2 = \frac{2}{5}\zeta_2^2 \otimes 1 = \zeta_4 \otimes 1$$

• We obtain a consistent way to include all the zeta values.

• In a recent paper on multiple zeta values, Francis Brown argues that one can also define

$$\Delta(\zeta_{2n}) = \zeta_{2n} \otimes 1$$

• This indeed solves the previous problem

$$\Delta(\zeta_4) = \frac{2}{5}\Delta(\zeta_2)^2 = \frac{2}{5}[\zeta_2 \otimes 1]^2 = \frac{2}{5}\zeta_2^2 \otimes 1 = \zeta_4 \otimes 1$$

- We obtain a consistent way to include all the zeta values.
- I even argue that we can do better and define $\Delta(\pi) = \pi \otimes 1$
 - This will allow to include also $i\pi$.

• Let us consider the inversion relations for (classical) polylogarithms:

$$\text{Li}_n(1/z) = (-1)^{n+1} \text{Li}_n(z) + \dots$$

- Traditional approach:
 - Take the integral representation, and find a change of variable.
 - The integral has a branch cut, and develops an imaginary part.

• Let us consider the inversion relations for (classical) polylogarithms:

$$\text{Li}_n(1/z) = (-1)^{n+1} \text{Li}_n(z) + \dots$$

- Traditional approach:
 - Take the integral representation, and find a change of variable.
 - The integral has a branch cut, and develops an imaginary part.
- If my claim is correct, I should be able to get to this relation
 - ➡ in a purely algebraic/combinatorial way,
 - → without even looking at the integral representation.

• Indeed, the Hopf algebra fixes the inversion relations recursively.

• Indeed, the Hopf algebra fixes the inversion relations recursively.

• Weight 1: trivial

$$\operatorname{Li}_1\left(\frac{1}{x}\right) = -\ln\left(1 - \frac{1}{x}\right) = -\ln(1 - x) + \ln(-x) = -\ln(1 - x) + \ln x - i\pi$$

with $x = x + i \varepsilon$.

• Weight 2:

$$\Delta_{1,1} \left[\operatorname{Li}_2 \left(\frac{1}{x} \right) \right] = -\ln \left(1 - \frac{1}{x} \right) \otimes \ln \left(\frac{1}{x} \right)$$
$$= \ln(1 - x) \otimes \ln x - \ln x \otimes \ln x + i\pi \otimes \ln x$$
$$= \Delta_{1,1} \left[-\operatorname{Li}_2(x) - \frac{1}{2} \ln^2 x + i\pi \ln x \right].$$

• Weight 2:

$$\Delta_{1,1} \left[\operatorname{Li}_2 \left(\frac{1}{x} \right) \right] = -\ln \left(1 - \frac{1}{x} \right) \otimes \ln \left(\frac{1}{x} \right)$$
$$= \ln(1 - x) \otimes \ln x - \ln x \otimes \ln x + i\pi \otimes \ln x$$
$$= \Delta_{1,1} \left[-\operatorname{Li}_2(x) - \frac{1}{2} \ln^2 x + i\pi \ln x \right].$$

• This fixes the inversion relation, up to some zeta value.

At each step we loose a zeta value, they are indecomposable ('primitive').

$$\operatorname{Li}_{2}\left(\frac{1}{x}\right) = -\operatorname{Li}_{2}(x) - \frac{1}{2}\ln^{2}x + i\pi\ln x + c\pi^{2}$$

and c = 1/3 from x=1.

• Weight 3: $\Delta_{1,1,1} \left[\operatorname{Li}_3 \left(\frac{1}{x} \right) \right] = -\ln \left(1 - \frac{1}{x} \right) \otimes \ln \left(\frac{1}{x} \right) \otimes \ln \left(\frac{1}{x} \right)$ $= -\ln(1 - x) \otimes \ln x \otimes \ln x + \ln x \otimes \ln x - i\pi \otimes \ln x \otimes \ln x$ $= \Delta_{1,1,1} \left[\operatorname{Li}_3(x) + \frac{1}{6} \ln^3 x - \frac{i\pi}{2} \ln^2 x \right].$

• Weight 3: $\Delta_{1,1,1} \left[\operatorname{Li}_3 \left(\frac{1}{x} \right) \right] = -\ln\left(1 - \frac{1}{x} \right) \otimes \ln\left(\frac{1}{x} \right) \otimes \ln\left(\frac{1}{x} \right)$ $= -\ln(1 - x) \otimes \ln x \otimes \ln x + \ln x \otimes \ln x - i\pi \otimes \ln x \otimes \ln x$ $= \Delta_{1,1,1} \left[\operatorname{Li}_3(x) + \frac{1}{6} \ln^3 x - \frac{i\pi}{2} \ln^2 x \right].$

- At this stage however we have lost everything proportional to zeta values.
 - ➡ Go one step up!

$$\Delta_{2,1} \left[\operatorname{Li}_3 \left(\frac{1}{x} \right) - \left(\operatorname{Li}_3(x) + \frac{1}{6} \ln^3 x - \frac{i\pi}{2} \ln^2 x \right) \right]$$
$$= \left[-\operatorname{Li}_2 \left(\frac{1}{x} \right) - \operatorname{Li}_2(x) - \frac{1}{2} \ln^2 x - i\pi \ln x \right] \otimes \ln x$$
$$= -\frac{1}{3} \pi^2 \otimes \ln x = \Delta_{2,1} \left(-\frac{\pi^2}{3} \ln x \right)$$
Example: inversion relations

• Finally:

and $\alpha = \beta = 0$ from x=1.

• We could now go on like this and derive the inversion relations for arbitrary weight.

Example: inversion relations

• Finally:

Li₃
$$\left(\frac{1}{x}\right) = \text{Li}_3(x) + \frac{1}{6}\ln^3 x - \frac{i\pi}{2}\ln^2 x - \frac{\pi^2}{3}\ln x + \alpha\zeta_3 + \beta i\pi^3$$

and $\alpha = \beta = 0$ from x=1.

- We could now go on like this and derive the inversion relations for arbitrary weight.
 - No painful manipulation of the integral representation at any step!

Example: inversion relations

$$\begin{aligned} G(-z, -z, 1-z, 1-z; y) &= \operatorname{Li}_{3}(1-x)\log(1-z) + \operatorname{Li}_{3}(1-z)\log(1-x) + \operatorname{Li}_{4}\left(1-\frac{1}{x}\right) + \operatorname{Li}_{4}(1-x) \\ &- \operatorname{Li}_{4}(x) - \operatorname{Li}_{3}(1-x)\log(x) + \operatorname{Li}_{4}\left(1-\frac{1}{z}\right) + \operatorname{Li}_{4}(1-z) - \operatorname{Li}_{4}(z) - \operatorname{Li}_{3}(1-z)\log(z) + \frac{1}{4}\log^{2}(1-x) \\ &\log^{2}(1-z) + \pi^{2}\left(-\frac{1}{6}\log(1-x)\log(1-z) + \frac{\log^{2}(x)}{12} + \frac{\log^{2}(z)}{12}\right) + \zeta(3)\log(x) - \zeta(3)\log(1-x) + \frac{\log^{4}(x)}{24} - \frac{1}{6}\log(1-x)\log^{3}(x) - \zeta(3)\log(1-z) + \zeta(3)\log(z) + \frac{\log^{4}(z)}{24} - \frac{1}{6}\log(1-z)\log^{3}(z) + \frac{7\pi^{4}}{360}, \end{aligned}$$

with x+y+z=1, 0 < x,y,z < 1.

The Hopf algebra of polylogarithms

- Goncharov's Hopf algebra, combined with Brown's treatment of even zeta values, gives an effective tool to deal with functional equations among multiple polylogarithms.
- All **functional equations** among multiple polylogarithms are pure **combinatorics**!

The Hopf algebra of polylogarithms

- Goncharov's Hopf algebra, combined with Brown's treatment of even zeta values, gives an effective tool to deal with functional equations among multiple polylogarithms.
- All **functional equations** among multiple polylogarithms are pure **combinatorics**!
- It turns out that the coproduct knows even more!
 The second factor knows about derivatives:

$$\Delta\left(\frac{\partial}{\partial x_k}F_w\right) = \left(\mathrm{id}\otimes\frac{\partial}{\partial x_k}\right)\,\Delta(F_w)$$

The first factor knows about discontinuities:

$$\Delta\left(\mathcal{M}_{x_k=a}F_w\right) = \left(\mathcal{M}_{x_k=a}\otimes \mathrm{id}\right)\,\Delta(F_w)$$

 \blacktriangleright cf. $\Delta(\pi) = \pi \otimes 1!$

Some examples from physics

Hopf algebras meet Feynman integrals

Pure Mathematics vs. Physics

- Multiple polylogarithms are everywhere in Feynman integrals and scattering amplitudes.
 - Need to 'control' these functions and the relations they satisfy.
- Understanding the underlying mathematics opens new possibilities in the world of loop computations!
 - ➡ Simplify complicated expressions.
 - Get symbol by other means (differential equations, OPE, educated guessing,...), then reconstruct the function.
 - In some cases: can even determine the space of functions to all loop orders a priori!
 - ➡ Can help for numerical evaluation of these functions.

[Buehler, Caron-Huot, Del Duca, Dixon, Drummond, CD, Ferro, Gaiotto, Goncharov, He, Henn, Maldacena, Pennington, Sever, Viera, ...]

Pure Mathematics vs. Physics

- In the following, I will very briefly discuss two examples.
- The two-loop helicity amplitudes for H+3gluons.
 - ➡ Substantial simplification of the result.
- The 6-point remainder function in the Regge limit.
 - Knowledge of the space of functions allows us to go to 10 loops without much effort!

Some examples from physics

Helicity amplitudes for H + 3 gluons

- Gehrmann, Jaquier, Glover and Koukoutsakis have recently computed the two-loop helicity amplitudes for a Higgs boson + 3 gluons
 - ➡ in the decay region

$$H \to g^+ g^+ g^+ \qquad H \to g^+ g^+ g^-$$

➡ and the scattering region

 $g^+ g^+ \rightarrow g^+ H$ $g^+ g^+ \rightarrow g^- H$ $g^+ g^- \rightarrow g^+ H$ • Kinematics (in the decay region):

$$x_1 = \frac{s_{12}}{m_H^2}, \qquad x_2 = \frac{s_{23}}{m_H^2}, \qquad x_3 = \frac{s_{31}}{m_H^2}$$

 $0 < x_i < 1$ and $x_1 + x_2 + x_3 = 1$

- The result was expressed in terms of complicated combinations of '2d harmonic polylogarithms'.
 - Symmetries completely lost (e.g. Bose symmetry).
 - → Very long and complicated.
 - ➡ Numerical evaluation of complicated special functions.
 - Analytic continuation from decay to scattering region very complicated.

- The result was expressed in terms of complicated combinations of '2d harmonic polylogarithms'.
 - Symmetries completely lost (e.g. Bose symmetry).
 - → Very long and complicated.
 - ➡ Numerical evaluation of complicated special functions.
 - Analytic continuation from decay to scattering region very complicated.
- Brandhuber, Gang and Travaglini observed that the symbol of the leading color weight 4 part (after subtracting the one-loop squared) is equal to the symbol of the form factor of 3 gluons in N=4 Super Yang-Mills.
 - A simpler representation of the Higgs amplitudes in terms of classical polylogarithms only should exist.

• We can now extend this to term beyond the symbol, e.g., for $H \rightarrow g^+g^+g^+$.

• We can now extend this to term beyond the symbol, e.g., for $H \rightarrow g^+g^+g^+$.

$$\mathcal{S}\left(\overline{A}_{\alpha, \text{ weight } 4}^{(2)}\right) = \mathcal{S}\left(\mathcal{R}_{3}^{(2)}\right)$$

[Brandhuber, Gang, Travaglini]

• We can now extend this to term beyond the symbol, e.g., for $H \rightarrow g^+g^+g^+$.

$$\mathcal{S}\left(\overline{A}_{\alpha, \text{ weight } 4}^{(2)}\right) = \mathcal{S}\left(\mathcal{R}_{3}^{(2)}\right) \qquad [\text{Brandhuber, Gang, Travaglini}]$$
$$\Delta_{2,1,1}\left[\overline{A}_{\alpha, \text{ weight } 4}^{(2)} - \mathcal{R}_{3}^{(2)}\right] = -\frac{1}{6}\pi^{2} \otimes \Delta_{1,1}\left[A_{\alpha}^{(1)}\right] = \Delta_{2,1,1}\left[-\frac{\pi^{2}}{6}A_{\alpha}^{(1)}\right]$$

• We can now extend this to term beyond the symbol, e.g., for $H \rightarrow g^+g^+g^+$.

$$S\left(\overline{A}_{\alpha, \text{ weight } 4}^{(2)}\right) = S\left(\mathcal{R}_{3}^{(2)}\right) \qquad [\text{Brandhuber, Gang, Travaglini}]$$

$$\Delta_{2,1,1}\left[\overline{A}_{\alpha, \text{ weight } 4}^{(2)} - \mathcal{R}_{3}^{(2)}\right] = -\frac{1}{6}\pi^{2} \otimes \Delta_{1,1}\left[A_{\alpha}^{(1)}\right] = \Delta_{2,1,1}\left[-\frac{\pi^{2}}{6}A_{\alpha}^{(1)}\right]$$

$$\Delta_{3,1}\left[\overline{A}_{\alpha, \text{ weight } 4}^{(2)} - \mathcal{R}_{3}^{(2)} + \frac{\pi^{2}}{6}A_{\alpha}^{(1)}\right] = -\frac{1}{4}\zeta_{3}\otimes B_{\alpha}^{(1)} = \Delta_{3,1}\left[-\frac{1}{4}\zeta_{3}B_{\alpha}^{(1)}\right]$$

We can now extend this to term beyond the symbol, e.g., for $H \rightarrow g^+g^+g^+$.

We can now extend this to term beyond the symbol, e.g., for $H \rightarrow g^+g^+g^+$.

• We can of course do the same for all other color structures.

$$\begin{split} \overline{A}_{\alpha}^{(2)} &= \mathcal{R}_{3}^{(2)} - \frac{\pi^{2}}{6} A_{\alpha}^{(1)} - \frac{1}{4} \zeta_{3} B_{\alpha}^{(1)} - \frac{\pi^{4}}{2880} \\ &= \frac{11}{6} \left\{ \Lambda_{3} \left(-\frac{x_{1}x_{3}}{x_{2}} \right) + \Lambda_{3} \left(-\frac{x_{2}x_{3}}{x_{1}} \right) + \Lambda_{3} \left(-\frac{x_{1}x_{2}}{x_{3}} \right) - \sum_{i=1}^{3} \operatorname{Li}_{3} \left(1 - \frac{1}{x_{i}} \right) \right. \\ &= \Lambda_{3} \left(-\frac{x_{1}}{x_{2}} \right) - \Lambda_{3} \left(-\frac{x_{2}}{x_{1}} \right) - \Lambda_{3} \left(-\frac{x_{1}}{x_{3}} \right) - \Lambda_{3} \left(-\frac{x_{3}}{x_{1}} \right) - \Lambda_{3} \left(-\frac{x_{2}}{x_{3}} \right) - \Lambda_{3} \left(-\frac{x_{2}}{x_{3}} \right) \right. \\ &+ \frac{1}{2} \ln(x_{1} x_{2} x_{3}) A_{\alpha}^{(1)} + \frac{7}{2} \sum_{i=1}^{3} \left[\operatorname{Li}_{2} (1 - x_{i}) \ln x_{i} \right] + \frac{3}{4} \ln x_{1} \ln x_{2} \ln x_{3} + \frac{1}{6} \ln^{3} (x_{1} x_{2} x_{3}) \right. \\ &- \frac{5}{16} \pi^{2} \ln(x_{1} x_{2} x_{3}) - \frac{3}{8} \zeta_{3} + i \pi A_{\alpha}^{(1)} + \frac{i \pi^{3}}{16} - \frac{1}{3} \sum_{i=1}^{3} \ln^{3} x_{i} \right\} \\ &+ \frac{1}{36} \sum_{i=1}^{3} \left[\frac{P_{1}(x_{i}, x_{i-1}, x_{i+1})}{x_{i-1}^{2} x_{i+1}^{2}} \operatorname{Li}_{2} (1 - x_{i}) + \frac{P_{2}(x_{i}, x_{i-1}, x_{i+1})}{x_{i}^{2}} \ln x_{i-1} \ln x_{i+1} + \frac{121}{4} \ln^{2} x_{i} \right] \\ &+ \frac{P_{3}(x_{1}, x_{2}, x_{3})}{144 x_{1}^{2} x_{2}^{2} x_{3}^{2}} \pi^{2} - \frac{121}{72} i \pi \ln(x_{1} x_{2} x_{2}) + \frac{11}{36} i \pi (x_{1} x_{2} + x_{2} x_{3} + x_{3} x_{1}) + \frac{185}{24} i \pi \\ &+ \frac{1}{72} \sum_{i=1}^{3} \frac{P_{4}(x_{i}, x_{i-1}, x_{i+1})}{x_{i-1} x_{i+1}} \ln x_{i} - \frac{1}{72} (x_{1} x_{2} + x_{3} x_{2} + x_{1} x_{3})^{2} + \frac{247}{108} (x_{1} x_{2} + x_{3} x_{2} + x_{1} x_{3}) \\ &+ \frac{1321}{216} , \end{split}$$

 $\Lambda_n(z) = \int_0^z \mathrm{d}t \, \frac{\ln^{n-1} |t|}{1+t} = (n-1)! \sum_{k=0}^{n-1} \frac{(-1)^{n-k}}{k!} \, \ln^k |z| \, \mathrm{Li}_{n-k}(z)$

$$\overline{D}_{\alpha}^{(2)} = -\zeta_{3} + \frac{i\pi}{4} - \frac{1}{6} \left(x_{1}x_{2} + x_{3}x_{2} + x_{1}x_{3} \right) + \frac{67}{48} + \frac{P_{5}(x_{1}, x_{2}, x_{3})}{72x_{1}^{2}x_{2}^{2}x_{3}^{2}} \pi^{2} + \frac{1}{12} \sum_{i=1}^{3} \left[\frac{P_{6}(x_{i}, x_{i-1}, x_{i+1})}{x_{i-1}^{2}x_{i+1}^{2}} \operatorname{Li}_{2}(1 - x_{i}) + \frac{P_{7}(x_{i}, x_{i-1}, x_{i+1})}{x_{i}^{2}} \ln x_{i-1} \ln x_{i+1} \right]$$
(7.19)
$$+ \frac{P_{8}(x_{i}, x_{i-1}, x_{i+1})}{2x_{i-1}x_{i+1}} \ln x_{i}$$

$$\overline{E}_{\alpha}^{(2)} = -\frac{i\pi^{3}}{48} - \frac{i\pi}{3} A_{\alpha}^{(1)} - \frac{1}{12} \ln (x_{1}x_{2}x_{3}) (\ln x_{1} \ln x_{2} + \ln x_{1} \ln x_{3} + \ln x_{2} \ln x_{3})
+ \frac{P_{13}(x_{1}, x_{2}, x_{3})}{432} + \frac{7}{12} \ln x_{1} \ln x_{2} \ln x_{3} - \frac{5}{48}\pi^{2} \ln (x_{1}x_{2}x_{3}) - \frac{29}{24}\zeta_{3}
+ \frac{11}{18} i\pi \ln(x_{1}x_{2}x_{3}) + \frac{P_{11}(x_{1}, x_{2}, x_{3})}{288x_{1}^{2}x_{2}^{2}x_{3}^{2}} \pi^{2} + \sum_{i=1}^{3} \left[\text{Li}_{3}(x_{i}) - \frac{1}{3}\text{Li}_{3}(1 - x_{i}) \right]
+ \frac{1}{6}\text{Li}_{2}(1 - x_{i}) \ln x_{i} + \frac{1}{2}\ln(1 - x_{i}) \ln^{2}x_{i} + \frac{1}{6}\ln(x_{1}x_{2}x_{3}) \text{Li}_{2}(1 - x_{i})
+ \frac{P_{9}(x_{i}, x_{i-1}, x_{i+1})}{36x_{i}^{2}-1} \text{Li}_{2}(1 - x_{i}) + \frac{P_{10}(x_{i}, x_{i-1}, x_{i+1})}{36x_{i}^{2}} \ln x_{i-1} \ln x_{i+1}
+ \frac{11}{36}\ln^{2}x_{i} + \frac{P_{12}(x_{i}, x_{i-1}, x_{i+1})}{216x_{i-1}x_{i+1}} \ln x_{i} - \frac{13}{36}i\pi (x_{1}x_{2} + x_{3}x_{2} + x_{1}x_{3}) - \frac{71}{18}i\pi ,$$
(7.20)

$$\overline{F}_{\alpha}^{(2)} = -\frac{i\pi}{18} \ln(x_1 x_2 x_3) - \frac{11}{144} \pi^2 + \frac{1}{36} \sum_{i=1}^3 \ln^2 x_i - \frac{5}{54} \ln(x_1 x_2 x_3) + \frac{5i\pi}{18} + \frac{i\pi}{18} (x_1 x_2 + x_2 x_3 + x_3 x_1) + \frac{5}{54} (x_1 x_2 + x_3 x_2 + x_1 x_3) - \frac{1}{72} (x_1 x_2 + x_3 x_2 + x_1 x_3)^2 - \frac{x_1 x_2 x_3}{18} \sum_{i=1}^3 \frac{\ln x_i}{x_i},$$

- Originally, the expressions filled up more than 6 pages!
 Bose symmetry is now completely manifest.
- Only simple functions (classical polylogarithms) with simple arguments.
 - easy numerical evaluation.
- Similar results can be obtained for $H \to g^+g^+g^-$.

Some examples from physics

The Regge limit of the 6 point remainder function

• In the Regge limit, we can approximate the amplitude by the expansion in the logarithms that are divergent as $u_1 \rightarrow 1$.

$$R|_{\text{MRK}} = 2\pi i \sum_{\ell=2}^{\infty} \sum_{n=0}^{\ell-1} a^{\ell} \log^{n}(1-u_{1}) \left[g_{n}^{(\ell)}(w,w^{*}) + 2\pi i h_{n}^{(\ell)}(w,w^{*}) \right]$$
[Bartels, Lipatov, Sabio Vera]

• The coefficients $g_n^{(\ell)}(w, w^*)$ for n=l-1 and n=l-2 can be computed, to any loop order, by the integral

$$\cos \pi \omega_{ab} + i \frac{a}{2} \sum_{n=-\infty}^{\infty} (-1)^n \left(\frac{w}{w^*}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d\nu}{\nu^2 + \frac{n^2}{4}} |w|^{2i\nu} \Phi_{\text{Reg}}(\nu, n) \left(-\frac{1}{\sqrt{u_2 u_3}}\right)^{\omega(\nu, n)}$$

$$E_{\nu,n} = -\frac{1}{2} \frac{|n|}{\nu^2 + \frac{n^2}{4}} + \psi \left(1 + i\nu + \frac{|n|}{2}\right) + \psi \left(1 - i\nu + \frac{|n|}{2}\right) - 2\psi(1)$$

$$\Phi_{\text{Reg}}^{(1)}(\nu,n) = -\frac{1}{2}E_{\nu,n}^2 - \frac{3}{8}\frac{n^2}{(\nu^2 + \frac{n^2}{4})^2} - \zeta_2$$

- Based on general grounds, we can argue that, to all loop orders, the results are given by combination of so-called single-valued harmonic polylogarithms.
- These functions have been classified by F. C. Brown for all weights, and thus we now the space of functions to all loop orders!
- Example:

- Based on general grounds, we can argue that, to all loop orders, the results are given by combination of so-called single-valued harmonic polylogarithms.
- These functions have been classified by F. C. Brown for all weights, and thus we now the space of functions to all loop orders!
- Example:

$$\begin{split} L_2^- &= \frac{1}{4} \left[-2 H_{1,0} + 2 \overline{H}_{1,0} + 2 H_0 \overline{H}_1 - 2 \overline{H}_0 H_1 + 2 H_2 - 2 \overline{H}_2 \right] \\ &= \mathrm{Li}_2(z) - \mathrm{Li}_2(\bar{z}) + \frac{1}{2} \log |z|^2 (\log(1-z) - \log(1-\bar{z})) \,, \end{split}$$

$$\cos \pi \omega_{ab} + i \frac{a}{2} \sum_{n=-\infty}^{\infty} (-1)^n \left(\frac{w}{w^*}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d\nu}{\nu^2 + \frac{n^2}{4}} |w|^{2i\nu} \Phi_{\text{Reg}}(\nu, n) \left(-\frac{1}{\sqrt{u_2 u_3}}\right)^{\omega(\nu, n)}$$

- Instead of having to sum up the infinite tower of residues, just match the truncated sum to the Taylor expansion of the basis functions.
- In this way, by exploiting the a priori knowledge on the space of functions, we obtain a constructive way to compute any loop order we like!

$$\cos \pi \omega_{ab} + i \frac{a}{2} \sum_{n=-\infty}^{\infty} (-1)^n \left(\frac{w}{w^*}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d\nu}{\nu^2 + \frac{n^2}{4}} |w|^{2i\nu} \Phi_{\text{Reg}}(\nu, n) \left(-\frac{1}{\sqrt{u_2 u_3}}\right)^{\omega(\nu, n)}$$

- Instead of having to sum up the infinite tower of residues, just match the truncated sum to the Taylor expansion of the basis functions.
- In this way, by exploiting the a priori knowledge on the space of functions, we obtain a constructive way to compute any loop order we like!

$$g_1^{(2)}(w, w^*) = \frac{1}{4} [L_1^+]^2 - \frac{1}{16} [L_0^-]^2,$$

$$g_0^{(2)}(w, w^*) = -L_3^+ + \frac{1}{6} [L_1^+]^3 + \frac{1}{8} [L_0^-]^2 L_1^+$$

[Lipatov, Prygarin; Dixon, Drummond, Henn]

$$g_{2}^{(3)}(w,w^{*}) = -\frac{1}{8}L_{3}^{+} + \frac{1}{12}\left[L_{1}^{+}\right]^{3},$$

$$g_{1}^{(3)}(w,w^{*}) = \frac{1}{8}L_{0}^{-}L_{2,1}^{-} - \frac{5}{8}L_{1}^{+}L_{3}^{+} + \frac{5}{48}[L_{1}^{+}]^{4} + \frac{1}{16}[L_{0}^{-}]^{2}[L_{1}^{+}]^{2} - \frac{5}{768}[L_{0}^{-}]^{4} - \frac{\pi^{2}}{12}[L_{1}^{+}]^{2} + \frac{\pi^{2}}{48}[L_{0}^{-}]^{2} + \frac{1}{4}\zeta_{3}L_{1}^{+}.$$

[Lipatov, Prygarin; Dixon, Drummond, Henn]

$$g_{2}^{(3)}(w,w^{*}) = -\frac{1}{8}L_{3}^{+} + \frac{1}{12}\left[L_{1}^{+}\right]^{3},$$

$$g_{1}^{(3)}(w,w^{*}) = \frac{1}{8}L_{0}^{-}L_{2,1}^{-} - \frac{5}{8}L_{1}^{+}L_{3}^{+} + \frac{5}{48}[L_{1}^{+}]^{4} + \frac{1}{16}[L_{0}^{-}]^{2}[L_{1}^{+}]^{2} - \frac{5}{768}[L_{0}^{-}]^{4}$$

$$- \frac{\pi^{2}}{12}[L_{1}^{+}]^{2} + \frac{\pi^{2}}{48}[L_{0}^{-}]^{2} + \frac{1}{4}\zeta_{3}L_{1}^{+}.$$

[Lipatov, Prygarin; Dixon, Drummond, Henn]

$$\begin{split} g_3^{(4)}(w,w^*) &= \frac{1}{48} \, [L_2^-]^2 + \frac{1}{48} \, [L_0^-]^2 \, [L_1^+]^2 + \frac{7}{2304} \, [L_0^-]^4 + \frac{1}{48} \, [L_1^+]^4 - \frac{1}{16} \, L_0^- \, L_{2,1}^- \\ &- \frac{5}{48} \, L_1^+ \, L_3^+ - \frac{1}{8} \, L_1^+ \, \zeta_3 \, , \\ g_2^{(4)}(w,w^*) &= \frac{3}{64} \, [L_0^-]^2 \, [L_1^+]^3 + \frac{1}{128} \, L_1^+ \, [L_0^-]^4 - \frac{3}{32} \, L_3^+ \, [L_0^-]^2 + \frac{1}{8} \, [L_0^-]^2 \, \zeta_3 \\ &- \frac{1}{8} \, [L_1^+]^2 \, \zeta_3 + \frac{3}{80} \, [L_1^+]^5 - \frac{\pi^2}{24} \, [L_1^+]^3 - \frac{1}{16} \, L_0^- \, L_{2,1}^- \, L_1^+ + \frac{13}{16} \, L_5^+ \\ &+ \frac{3}{8} \, L_{3,1,1}^+ + \frac{1}{4} \, L_{2,2,1}^+ - \frac{5}{16} \, L_3^+ \, [L_1^+]^2 + \frac{\pi^2}{16} \, L_3^+ \, , \end{split}$$

[Dixon, CD, Pennington]

$$\begin{split} g_4^{(5)}(w,w^*) &= \frac{1}{96} [L_0^-]^2 [L_1^+]^3 + \frac{17}{9216} L_1^+ [L_0^-]^4 - \frac{5}{384} L_3^+ [L_0^-]^2 + \frac{1}{24} [L_0^-]^2 \zeta_3 \\ &\quad -\frac{1}{12} [L_1^+]^2 \zeta_3 + \frac{1}{240} [L_1^+]^5 - \frac{1}{24} L_0^- L_{2,1}^- L_1^+ + \frac{43}{384} L_5^+ + \frac{1}{8} L_{3,1,1}^+ + \frac{1}{12} L_{2,2,1}^+ \\ &\quad -\frac{1}{24} L_3^+ [L_1^+]^2 \,, \end{split} \\ g_3^{(5)}(w,w^*) &= -\frac{1}{384} [L_2^-]^2 [L_0^-]^2 + \frac{5}{64} [L_2^-]^2 [L_1^+]^2 - \frac{\pi^2}{72} [L_2^-]^2 + \frac{1}{384} [L_0^-]^4 [L_1^+]^2 - \frac{7}{48} \zeta_3^2 \\ &\quad + \frac{5}{144} [L_0^-]^2 [L_1^+]^4 - \frac{\pi^2}{72} [L_0^-]^2 [L_1^+]^2 - \frac{31}{1152} L_{2,1}^- [L_0^-]^3 - \frac{11}{384} L_1^+ L_3^+ [L_0^-]^2 \\ &\quad - \frac{7}{48} L_1^+ [L_0^-]^2 \zeta_3 + \frac{31}{69120} [L_0^-]^6 - \frac{7\pi^2}{3456} [L_0^-]^4 + \frac{7}{48} [L_{2,1}^-]^2 - \frac{31}{192} L_0^- L_{2,1}^- [L_1^+]^2 \\ &\quad - \frac{65}{576} L_3^+ [L_1^+]^3 - \frac{13}{96} [L_1^+]^3 \zeta_3 + \frac{7}{720} [L_1^+]^6 - \frac{\pi^2}{72} [L_1^+]^4 + \frac{1}{48} [L_3^+]^2 + \frac{5}{96} L_4^- L_2^- \\ &\quad - \frac{7}{24} L_2^- L_{2,1,1}^- + \frac{1}{192} L_0^- L_{4,1}^- + \frac{1}{16} L_0^- L_{3,2}^- + \frac{\pi^2}{24} L_0^- L_{2,1}^- + \frac{9}{16} L_0^- L_{2,1,1,1}^- \\ &\quad + \frac{33}{64} L_5^+ L_1^+ + \frac{5\pi^2}{72} L_1^+ L_3^+ - \frac{7}{48} L_1^+ L_{3,1,1}^+ + \frac{25}{32} L_1^+ \zeta_5 + \frac{\pi^2}{12} L_1^+ \zeta_3 - \frac{5}{32} L_3^+ \zeta_3 \end{aligned}$$

[Dixon, CD, Pennington]

LLA and NLLA

LLA and NLLA

Conclusion

- Very large classes of Feynman integrals and scattering amplitudes can be expressed in terms of multiple polylogarithms.
- Goncharov's Hopf algebra, combined with Brown's prescription for even zeta values, reduces functional equations among polylogarithms to purely combinatorial problems in the Hopf algebra.
- This opens many new ways to think about multi-loop computations.
- Open question: is there a coproduct on Feynman integrals/ scattering amplitudes that mimics the coproduct on the functions..?

The CHAPLIN library [Buehler, CD]

- Loop amplitudes can often be expressed in terms of a special class of multiple polylogarithms, the so called *barmonic* polylogarithms.
- Numerical routines for these functions are needed, including
 - hplog: Fortran, real arguments only. [Gehrmann, Remiddi]
 - HPL: Mathematica [Maitre]
 - → GiNaC [van Hameren, Vollinga, Weinzierl]
- CHAPLIN = Complex HArmonic PolyLogarithms In fortranN
 Based on a reduction of HPL 's to a basis
 - ➡ only a few new functions appear up to weight 4 (= 2 loops)

[CD, Gangl, Rhodes]

Reduction of HPLs [CD, Gangl, Rhodes]

- Main idea of the reduction: HPLs have symbols with entries drawn from the set {x, 1-x, 1+x, 2}.
- Next construct a spanning set for all HPLs (up to weight 4) that generates all polylogarithms whose symbol has entries drawn from the set above.

$$\begin{split} \mathcal{B}_{4}^{(1)}(x) &= \operatorname{Li}_{4}(x), \quad \mathcal{B}_{4}^{(2)}(x) = \operatorname{Li}_{4}(-x), \\ \mathcal{B}_{4}^{(3)}(x) &= \operatorname{Li}_{4}(1-x), \quad \mathcal{B}_{4}^{(4)}(x) = \operatorname{Li}_{4}\left(\frac{1}{1+x}\right), \\ \mathcal{B}_{4}^{(5)}(x) &= \operatorname{Li}_{4}\left(\frac{x}{x-1}\right), \quad \mathcal{B}_{4}^{(6)}(x) = \operatorname{Li}_{4}\left(\frac{x}{x+1}\right), \quad \mathcal{B}_{4}^{(13)}(x) = \operatorname{Li}_{4}\left(1-x^{2}\right), \quad \mathcal{B}_{4}^{(14)}(x) = \operatorname{Li}_{4}\left(\frac{x^{2}}{x^{2}-1}\right) \\ \mathcal{B}_{4}^{(7)}(x) &= \operatorname{Li}_{4}\left(\frac{1+x}{2}\right), \quad \mathcal{B}_{4}^{(8)}(x) = \operatorname{Li}_{4}\left(\frac{1-x}{2}\right), \quad \mathcal{B}_{4}^{(15)}(x) = \operatorname{Li}_{4}\left(\frac{4x}{(x+1)^{2}}\right) \\ \mathcal{B}_{4}^{(9)}(x) &= \operatorname{Li}_{4}\left(\frac{1-x}{1+x}\right), \quad \mathcal{B}_{4}^{(10)}(x) = \operatorname{Li}_{4}\left(\frac{x-1}{x+1}\right), \quad \mathcal{B}_{4}^{(17)}(x) = \operatorname{Li}_{2,2}\left(\frac{1}{2}, \frac{2x}{x+1}\right), \\ \mathcal{B}_{4}^{(18)}(x) &= \operatorname{Li}_{2,2}\left(\frac{1}{2}, \frac{2x}{x-1}\right) \end{split}$$
Reduction of HPLs [CD, Gangl, Rhodes]

Example:

$$\begin{split} H(0,0,1,-1;x) &= \mathrm{Li}_3(x) \log(1+x) + \frac{3}{4} \zeta_3 \log(1+x) - \frac{1}{6} \log^4(1+x) + \frac{1}{3} \log 2 \log^3(1+x) \\ &+ \frac{1}{6} \log x \log^3(1+x) + \frac{1}{3} \log^3 2 \log(1+x) - \frac{1}{2} \log^2 2 \log^2(1+x) + \frac{\pi^2}{6} \log^2(1+x) \\ &- \frac{\pi^2}{6} \log 2 \log(1+x) + \frac{1}{2} \mathrm{Li}_4(-x) - \frac{3}{2} \mathrm{Li}_4(x) - \frac{1}{4} \mathrm{Li}_4\left(\frac{4x}{(x+1)^2}\right) - \mathrm{Li}_4\left(\frac{1}{1+x}\right) \\ &- \mathrm{Li}_4\left(\frac{x}{x+1}\right) + 2\mathrm{Li}_4\left(\frac{2x}{x+1}\right) - 2\mathrm{Li}_4\left(\frac{1+x}{2}\right) + 2\mathrm{Li}_4\left(\frac{1}{2}\right) + \frac{\pi^4}{90} \,, \end{split}$$

- No new function is needed for the numerical evaluation in this case!
- In general, 3 new functions were needed (to express 118 HPLs).
- This reduction is what is implemented into the CHAPLIN library.
- For multiscale integrals more complicated functions appear.
- Same procedure can be applied there as well in principle.

- The massless scalar one-loop hexagon integral in D=6 dimensions
 - ➡ is finite,

➡ dual conformally invariant,

→ a weight 3 function.

 $(\log(-y^2p u(4)) - \log(-y^2m u(4))) \log^2(u(4))$ $(y^2m u(4) - y^2p u(4))(u(2, 5) - 1)$ $\left(-\frac{\log(u(4))\log(-y2m\,u(4))}{y2m\,u(4)-y2p\,u(4)}+\frac{\log(u(4))\log(-y2p\,u(4))}{y2m\,u(4)-y2p\,u(4)}+\frac{Li_2(y2m+1)}{y2m\,u(4)-y2p\,u(4)}-\frac{Li_2(y2p+1)}{y2m\,u(4)-y2p\,u(4)}\right)\log(u(4))$ u(2, 5) - 1 $(\log^2(-y^2p) - \log^2(-y^2m))\log(u(4))$ $(Li_2(y^2m + 1) - Li_2(y^2p + 1))\log(u(4))$ (2 v2m - 2 v2p) u(4) (u(2, 5) - 1) $(y^2m - y^2p) u(4) (u(2, 5) - 1)$ $(\operatorname{Li}_2(\operatorname{y2m} u(4)+1)-\operatorname{Li}_2(\operatorname{y2p} u(4)+1))\log(u(4)) \quad (\log(-\operatorname{y1p})-\log(-\operatorname{y1m}))\log(u(2,\,5))\log(u(4))$ $(y^2m u(4) - y^2p u(4))(u(2, 5) - 1)$ (v1m - v1p)(u(4) + u(2, 5)u(6, 2) - 1) $(\text{Li}_2(y1m+1) - \text{Li}_2(y1p+1))\log(u(4)) \qquad (\text{Li}_2(y1m\,u(6,\,2)+1) - \text{Li}_2(y1p\,u(6,\,2)+1))\,u(6,\,2)\log(u(4))$ $(y1m - y1p)(u(4) + u(2, 5)u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1) \\ (y1m u(6, 2) - y1p u(6, 2))(u(6, 2) - 1$ $\frac{1}{4} \log(1 - u(2, 5)) \left(-\frac{\log(1 - u(2, 5)) \log(-y2m(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5)) \log(-y2p(1 - u(2, 5)))}{y2m(1 - u(2, 5)) - y2p(1 - u(2, 5))} + \frac{\log(1 - u(2, 5))}{y2m(1 - u(2, 5))} + \frac{\log(1 - u(2, 5))}{y2m(1$ $Li_2(y2m + 1)$ $Li_2(y2p + 1)$ $y^{2m}(1 - u(2, 5)) - y^{2p}(1 - u(2, 5)) - y^{2m}(1 - u(2, 5)) - y^{2p}(1 - u(2, 5))$ $\frac{1}{u(4) + u(2,5) u(6,2) - 1} \log(u(2,5)) (1 - u(2,5) u(6,2))$ $\log(1-u(2,5))\log(-y\ln{(1-u(2,5)u(6,2))}) \\ \log(1-u(2,5))\log(-y\ln{(1-u(2,5)u(6,2))}) \\ \log(1-u(2,5))\log(-y\ln{(1-u(2,5)u(6,2)})) \\ \log(1-u(2,5)u(6,2)) \\ \log(1-u(2,5)u(6,2)u(6,2)) \\ \log(1-u(2,5)u(6,2)u(6,2)u(6,2)u(6,2)) \\ \log(1-u(2,5)u(6,2)u($ $y_{1m}(1 - u(2, 5) u(6, 2)) - y_{1p}(1 - u(2, 5) u(6, 2))^{+} y_{1m}(1 - u(2, 5) u(6, 2)) - y_{1p}(1 - u(2, 5) u(6, 2))$ $\operatorname{Li}_{2}\left(\frac{y \ln (1-u(2,5) u(6,2))}{1-u(2,5)} + 1\right)$ $Li_2\left(\frac{y_{1m}(1-u(2,5)u(6,2))}{1-u(2,5)}+1\right)$ $\frac{1}{y \ln (1 - u(2, 5) u(6, 2)) - y \ln (1 - u(2, 5) u(6, 2))} - \frac{1}{y \ln (1 - u(2, 5) u(6, 2)) - y \ln (1 - u(2, 5) u(6, 2))}$ $\frac{1}{1}\log(1-u(2,5)u(6,2))u(2,5)u(6,2)\left(-\frac{\log(1-u(2,5)u(6,2))\log(-y2m(1-u(2,5)u(6,2)))}{y2m(1-u(2,5)u(6,2))-y2p(1-u(2,5)u(6,2))}\right)$ u(4)(u(2,5)-1)log(1 - u(2, 5) u(6, 2)) log(-y2p (1 - u(2, 5) u(6, 2))) $Li_2(y^2m + 1)$ $\frac{1}{y^{2m}(1-u(2,5)u(6,2))-y^{2p}(1-u(2,5)u(6,2))} + \frac{1}{y^{2m}(1-u(2,5)u(6,2))-y^{2p}(1-u(2,5)u(6,2))}$ $Li_2(y2p + 1)$ $-\log(1 - u(2, 5)u(6, 2))$ $y_{2m}(1 - u(2, 5) u(6, 2)) - y_{2p}(1 - u(2, 5) u(6, 2)) \int_{-1}^{-1} u(4) (u(2, 5) - 1)^{n}$ $\log(1-u(2,5)u(6,2))\log(-y2m(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(-y2m(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2)) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2)) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2)u(6,2))\log(1-u(2,5)u(6,2))) \\ \log(1-u(2,5)u(6,2)u(6,2)u(6,2)) \\ \log(1-u(2,5)u(6,2)u(6,2)u(6,2)u(6,2)) \\ \log(1-u(2,5)u(6,2)u($ $y2m(1 - u(2, 5)u(6, 2)) - y2p(1 - u(2, 5)u(6, 2)) \xrightarrow{\top} y2m(1 - u(2, 5)u(6, 2)) - y2p(1 - u(2, 5)u(6, 2))$ $Li_2(y2m + 1)$ $Li_2(y2p + 1)$ $y^{2m}(1 - u(2, 5) u(6, 2)) - y^{2p}(1 - u(2, 5) u(6, 2)) - y^{2m}(1 - u(2, 5) u(6, 2)) - y^{2p}(1 - u(2, 5) u(6, 2))$ $\log^{2}(1 - u(2, 5)) \left(\log(-y2p (1 - u(2, 5))) - \log(-y2m (1 - u(2, 5)))\right)$ u(4) (y2m (1 - u(2, 5)) - y2p (1 - u(2, 5))) $log(1 - u(2, 5)) (Li_2(y2m(1 - u(2, 5)) + 1) - Li_2(y2p(1 - u(2, 5)) + 1)))$ u(4) (y2m (1 - u(2, 5)) - y2p (1 - u(2, 5)))

+ 6 more pages...

 $\left(-\frac{1}{2}\log(y^2m(1-u(2,5))+1)\log^2(-y^2m(1-u(2,5)))-\log^2(u(2,5))\log(-y^2m(1-u(2,5)))-1\right)\right)$ $\log\left(1 + \frac{1}{\sqrt{2m}}\right)\log(y^2m(1 - u(2, 5)) + 1)\log(-y^2m(1 - u(2, 5))) + \log\left(1 + \frac{1}{\sqrt{2m}}\right)\log(u(2, 5))$ $\log(-y2m(1-u(2,5))) + \log(y2m(1-u(2,5)) + 1)\log(u(2,5))\log(-y2m(1-u(2,5))) + 1)\log(u(2,5)) + 1)\log(u(2,5))\log(u(2,5))\log(u(2,5))\log(u(2,5)) + 1)\log(u(2,5))\log(u(2,5))\log(u(2,5)) + 1)\log(u(2,5))\log($ $\log(1 - u(2, 5)) \log(u(2, 5)) \log(-y2m(1 - u(2, 5))) + \frac{1}{2} \log(y2p(1 - u(2, 5)) + 1) \log^{2}(-y2p(1 - u(2, 5))) + \frac{1}{2} \log(y2p(1 - u(2, 5))) + \frac{1}{2} \log(y2p(1$ $\log(-y2p(1-u(2,5)))\log^{2}(u(2,5)) + \log\left(1+\frac{1}{\sqrt{2}n}\right)\log(y2p(1-u(2,5))+1)\log(-y2p(1-u(2,5))) - \log(1-u(2,5)))$ $\log\left(1 + \frac{1}{\sqrt{2p}}\right)\log(-y^2p(1 - u^2(2, 5)))\log(u^2(2, 5)) - \log(y^2p(1 - u^2(2, 5))) + 1)\log(-y^2p(1 - u^2(2, 5)))$ $\log(u(2,\,5)) - \log(1-u(2,\,5))\log(-y2p\,(1-u(2,\,5)))\log(u(2,\,5)) + \log(1-u(2,\,5))\operatorname{Li}_2(y2m\,(1-u(2,\,5)) + \log(1-u(2,\,5))) + \log(1-u(2,\,5)) + \log(1-u(2,\,5))$ $\log(1 - u(2, 5))\operatorname{Li}_{2}(y2p(1 - u(2, 5)) + 1) - \log(1 - u(2, 5))\operatorname{Li}_{2}\left(\frac{y2m(1 - u(2, 5)) + 1}{u(2, 5)}\right)$ $log(1 - u(2, 5)) Li_2\left(\frac{y2p(1 - u(2, 5)) + 1}{u(2, 5)}\right) - Li_3\left(1 + \frac{1}{y2m}\right) - Li_3\left(-\frac{1}{y2m}\right) + Li_3\left(1 + \frac{1}{y2p}\right) + Li_3\left(1 + \frac{1}{y2p}$ $Li_{3}\left(-\frac{1}{y2p}\right) + Li_{3}(y2m(1-u(2,5))+1) - Li_{3}(y2p(1-u(2,5))+1) - Li_{3}\left(\frac{y2m(1-u(2,5))+1}{u(2,5)}\right) + Li_{3}(y2m(1-u(2,5))+1) - Li_{3}$ $\operatorname{Li}_{3}\left(-\frac{y2m\left(1-u(2,\,5)\right)+1}{y2m\,u(2,\,5)}\right)+\operatorname{Li}_{3}\left(\frac{y2p\left(1-u(2,\,5)\right)+1}{u(2,\,5)}\right)-\operatorname{Li}_{3}\left(-\frac{y2p\left(1-u(2,\,5)\right)+1}{y2p\,u(2,\,5)}\right)$ $Li_{3}\left(\frac{-y2m\left(1-u(2,\,5)\right)+u(2,\,5)-1}{u(2,\,5)}\right)+Li_{3}\left(-\frac{-y2m\left(1-u(2,\,5)\right)+u(2,\,5)-1}{y2m\left(1-u(2,\,5)\right)u(2,\,5)}\right)$ $Li_{3}\left(\frac{-y2p(1-u(2,5))+u(2,5)-1}{-1}\right)-Li_{3}\left(-\frac{-y2p(1-u(2,5))+u(2,5)-1}{-1}\right)\right)$ $y_{2p}(1 - u(2, 5))u(2, 5)$ u(2, 5) $(u(4) (y2m (1 - u(2, 5)) - y2p (1 - u(2, 5)))) + \frac{(\log^2(-y2p) - \log^2(-y2m)) \log(1 - u(2, 5))}{(1 - u(2, 5))}$ $(\log^2(-y^2p) - \log^2(-y^2m))\log(u(3, 6))$ (2 y2m - 2 y2p) u(4) (u(2, 5) - 1) $(\log^2(-y^2p) - \log^2(-y^2m))\log(1 - u(2, 5)u(6, 2))$ (2 y2m - 2 y2p) u(4) (u(2, 5) - 1) $log(1 - u(2, 5)) (Li_2(y2m + 1) - Li_2(y2p + 1))$ $(y^2m - y^2p) u(4) (u(2, 5) - 1)$ $\log(u(3,\,6))\,({\rm Li}_2(y2m+1)-{\rm Li}_2(y2p+1))$ $(y^2m - y^2p) u(4) (u(2, 5) - 1)$ $log(1 - u(2, 5) u(6, 2)) (Li_2(y2m + 1) - Li_2(y2p + 1))$ (y2m - y2p) u(4) (u(2, 5) - 1)

u(4)(u(2, 5) - 1)

 $\log(-y2m)\log^{2}\left(\frac{1}{u(4)}\right) = \log(-y2p)\log^{2}\left(\frac{1}{u(4)}\right) = \log^{2}(-y2m\,u(4))\log\left(\frac{1}{u(4)}\right) = \log^{2}(-y2p\,u(4))\log\left(\frac{1}{u(4)}\right)$ v2m - v2p y2m - y2p 2 (y2m - y2p) 2 (y2m - y2p) $\mathrm{Li}_2(y2m\,u(4)+1)\log\Bigl(\tfrac{1}{u(4)}\Bigr) \quad \mathrm{Li}_2(y2p\,u(4)+1)\log\Bigl(\tfrac{1}{u(4)}\Bigr) \quad \log^2(-y2m\,u(4))\log(y2m\,u(4)+1)$ y2m - y2p y2m – y2p 2 (y2m - y2p) $\log^{2}(-y2p u(4)) \log(y2p u(4) + 1)$ Li₃(-y2m u(4)) Li₃(-y2p u(4)) 1 2 (y2m - y2p) $y_{2m} - y_{2p} + y_{2m} - y_{2p} + u_{(4)}(u_{(2, 5)} - 1)$ $\log(-y2m)\log^{2}\left(\frac{1}{1-u(2,5)}\right) - \log(-y2p)\log^{2}\left(\frac{1}{1-u(2,5)}\right) - \log^{2}(-y2m(1-u(2,5)))\log\left(\frac{1}{1-u(2,5)}\right)$ v2m - v2p y2m – y2p 2 (y2m - y2p) $\log^{2}(-y2p(1-u(2,5)))\log(\frac{1}{1-u(2,5)}) \quad \text{Li}_{2}(y2m(1-u(2,5))+1)\log(\frac{1}{1-u(2,5)})$ 2 (y2m - y2p) y2m – y2p $\operatorname{Li}_{2}(y2p(1-u(2,5))+1)\log\left(\frac{1}{1-u(2,5)}\right) - \log(y2m(1-u(2,5))+1)\log^{2}(-y2m(1-u(2,5)))$ v2m - v2p2 (y2m - y2p) $\log(y2p(1 - u(2, 5)) + 1)\log^{2}(-y2p(1 - u(2, 5))) \quad \text{Li}_{3}(-y2m(1 - u(2, 5))) \quad \text{Li}_{3}(-y2p(1 - u(2, 5)))$ y2m – y2p $2(y^2m - y^2p)$ y2m - y2p $\Big(\log(-y2m)\log^2 \Big(\frac{1}{1-u(2.5)\,u(6.2)} \Big) - \log(-y2p)\log^2 \Big(\frac{1}{1-u(2.5)\,u(6.2)} \Big)$ 1 y2m - y2p u(4)(u(2,5)-1)v2m - v2p $\log^{2}(-y2m(1-u(2,5)u(6,2)))\log(\frac{1}{1-u(2.5)u(6.2)}) - \log^{2}(-y2p(1-u(2,5)u(6,2)))\log(\frac{1}{1-u(2.5)u(6.2)})$ 2 (y2m - y2p) 2 (y2m - y2p) $\operatorname{Li}_{2}(\operatorname{y2m}(1-u(2,5)u(6,2))+1)\log\left(\frac{1}{1-u(2,5)u(6,2)}\right) - \operatorname{Li}_{2}(\operatorname{y2p}(1-u(2,5)u(6,2))+1)\log\left(\frac{1}{1-u(2,5)u(6,2)}\right) - \operatorname{Li}_{2}(\operatorname{y2m}(1-u(2,5)u(6,2))+1)\log\left(\frac{1}{1-u(2,5)u(6,2)}\right) - \operatorname{Li}_{2}(\operatorname{y2m}(1-u(2,5)u(6$ y2m - y2p y2m - y2p $\log^{2}(-y2m(1 - u(2, 5)u(6, 2)))\log(y2m(1 - u(2, 5)u(6, 2)) + 1)$ 2 (y2m - y2p) $\log^{2}(-y2p(1 - u(2, 5)u(6, 2)))\log(y2p(1 - u(2, 5)u(6, 2)) + 1)$ $2(v^2m - v^2p)$ ${\rm Li}_{3}(-y2m\,(1-u(2,\,5)\,u(6,\,2))) \quad {\rm Li}_{3}(-y2p\,(1-u(2,\,5)\,u(6,\,2)))$ y2m – y2p v2m - v2p $\left(-\log(-y^{2m}u(4))\log^{2}(1-u(4)) + \log(-y^{2p}u(4))\log^{2}(1-u(4)) + \log\left(1+\frac{1}{\sqrt{2m}}\right)\log(-y^{2m}u(4))\log(1-u(4)) + \log\left(1+\frac{1}{\sqrt{2m}}\right)\log(-y^{2m}u(4))\log(1-u(4))\right)\right)$ $\log(u(4))\log(-y2m u(4))\log(1-u(4)) - \log\left(1+\frac{1}{\sqrt{2p}}\right)\log(-y2p u(4))\log(1-u(4)) - \log(1-u(4))$ $\log(u(4))\log(-y2p\,u(4))\log(1-u(4)) + \log(-y2m\,u(4))\log(y2m\,u(4)+1)\log(1-u(4)) - \log(1-u(4)) + \log(1-u(4)$

• After 'symbolizing' this result, it reduces to

$$\mathcal{I}_6(u_1, u_2, u_3) = \frac{1}{\sqrt{\Delta}} \left[-2\sum_{i=1}^3 L_3(x_{i+1}, x_{i-1}) + 2\zeta_2 J + \frac{1}{3} J^3 \right]$$

$$L_3(x^+, x^-) = \sum_{k=0}^2 \frac{(-1)^k}{(2k)!!} \ln^k (x^+ x^-) \left(\ell_{3-k}(x^+) - \ell_{3-k}(x^-) \right) ,$$

$$\ell_n(x) = \frac{1}{2} \left(\operatorname{Li}_n(x) - (-1)^n \operatorname{Li}_n(1/x) \right) ,$$

$$J = \sum_{i=1}^{3} \left(\ell_1(x_i^+) - \ell_1(x_i^-) \right) \qquad x^{\pm} = \frac{u_1 + u_2 + u_3 - 1 \pm \sqrt{\Delta}}{2u_1 u_2 u_3}$$

$$x_i^{\pm} = u_i x^{\pm}$$

$$\Delta = (1 - u_1 - u_2 - u_3)^2 - 4u_1 u_2 u_3$$
[Dixon, Drummond, Henn;
Del Duca, CD, Smirnov]

• This simplicity motivated the study of more complicated hexagons:

$$\begin{split} x_1 & \begin{array}{c} x_2 \\ x_3 \\ x_4 \\ x_8 \\ x_7 \\ x_7$$

[Del Duca, Dixon, Drummond, CD, Henn, Smirnov]

$$x_1^+ := \chi(1, 4, 7) , \qquad \chi(i, j, k) := -\frac{\langle 4\overline{7} \rangle \langle X_i X_k \rangle \langle X_j 17 \rangle}{\langle 1\overline{7} \rangle \langle X_j X_k \rangle \langle X_i 47 \rangle}$$

$$\Delta_9 \equiv (1 - u_1 - u_2 - u_3 + u_4 u_1 u_2 + u_5 u_2 u_3 + u_6 u_3 u_1 - u_1 u_2 u_3 u_4 u_5 u_6)^2 - 4 u_1 u_2 u_3 (1 - u_4) (1 - u_5) (1 - u_6).$$

$$\begin{split} x_1^+ &= \frac{2u_3(1-u_6)[1-u_3u_6-u_2(1-u_3u_5u_6)]-(1-u_3u_6)(g_1-\sqrt{\Delta_9})}{2u_3(1-u_6)[1-u_2-u_3(1-u_2u_5)u_6]}, \\ x_2^+ &= \frac{2u_1u_3(1-u_6)[1-u_2u_4-u_3(1-u_2u_4u_5)]-(1-u_3)(g_6-\sqrt{\Delta_9})}{2u_1(1-u_6)[1-u_2u_4-u_3(1-u_2u_4u_5)]}, \\ x_3^+ &= \frac{2u_3(1-u_6)[(1-u_2u_5)(1-u_3u_5)-u_1(1-u_5)]-(1-u_3u_5)(g_1-\sqrt{\Delta_9})}{2u_1u_3u_5(1-u_6)[1-u_2u_4-u_3(1-u_2u_4u_5)]}, \\ x_4^+ &= -u_6\frac{2u_3(1-u_6)[1-u_5-u_1(1-u_2u_4u_5)(1-u_3u_5u_6)]+(1-u_3u_5u_6)(g_6-\sqrt{\Delta_9})}{2(1-u_6)[1-u_2-u_3(1-u_2u_5)u_6]}. \end{split}$$