Fusion in Virasoro logarithmic models and the Kazhdan–Lusztig correspondence

AM Gainutdinov

Lebedev Physics Institute, Moscow

joint work with Bushlanov, Feigin, and Tipunin arXiv:0901.1602 [hep/th]

> Institut für Theoretische Physik Zürich, May 2009.

LCFTs most naturally appear as

- a scaling limit of nonlocal lattice models (Pearce, Rasmussen, and Zuber, 2006);
- and in quantum chains with a nondiagonalizable Hamiltonian (Read, Saleur, 2007).

Generally speaking, a CFT appearing at the limit depends

- on a way of taking the limit and
- on chosen boundary conditions.

Generally speaking, a CFT appearing at the limit depends on a way of taking the limit and on chosen boundary conditions.

For proper choice of boundary conditions the lattice models of PRZ \longrightarrow Log models $\mathcal{WLM}(p,p')$ with the *triplet* $W_{p,p}$ -algebra of symmetry (FGST, 2006; and for $p'=1$ by Kausch and FHST)

The chiral algebra $W_{p,p'}$ is an extension of the vacuum module of the Virasoro algebra $\mathcal{V}_{p,p'}$ with the central charge $c_{p,p'} = 13 - 6p/p' - 6p'/p$ by a triplet of the Virasoro primary fields with conformal dimension $\Delta_{1,3}$.

The most investigated models are $WLM(p, 1)$.

For this set of models, the representation categories of

- the triplet algebra \mathcal{W}_p
- and of the finite-dimensional quantum group $\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)$ with $\mathfrak{q} = e^{i\pi/p}$ (FGST, 2005)

are **equivalent** as *tensor categories* (FGST2 (2005), for p = 2; and by Nagatomo and Tsuchiya (2009), Adamovic and Milas (2009), as abelian categories)

Categories of W_p - and $\overline{\mathcal{U}}_q s\ell(2)$ -modules are **equivalent** as *tensor categories*

This is the manifestation of the Kazhdan–Lusztig duality:

- (1) there is a one-to-one correspondence between representations;
- (2) fusion rules of a conformal model can be calculated by tensor products of a quantum group representations
- (3) and the modular group action generated from chiral characters coincides with the one on the center of the corresponding quantum group.

In the logarithmic models $WLM(1, p)$, the Kazhdan–Lusztig duality is presented in its **full strength**.

For general coprime p and p', the models $WLM(p, p')$ also demonstrate the Kazhdan–Lusztig duality with the quantum group

$$
\mathfrak{g}_{p,p'}=\frac{\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)\otimes \overline{\mathcal{U}}_{\mathfrak{q}'} s\ell(2)}{Hopf\, ideal},\quad \mathfrak{q}=\mathrm{e}^{i\pi/p}\ \ and\ \ \mathfrak{q}'=\mathrm{e}^{i\pi/p'}
$$

but relation between the $\mathfrak{g}_{p,p'}$ and the $\mathcal{W}_{p,p'}$ algebra is more subtle.

There is *no* one-to-one correspondence between representations but

- the modular group action on the center of $\mathfrak{g}_{p,p'}$ (FGST, 06) **coincides** with
- the one on chiral characters in the $W_{p,p'}$ theory

and an open question about fusion...

Other choice of boundary conditions in the lattice models of PRZ

— $>$ Log models $\mathcal{LM}(p, p')$ with the Virasoro symmetry $\mathcal{V}_{p, p'}.$

Fusion rules for these models were calculated in

(1) Pearce, Rasmussen, 2007 (lattice approach)

and for some cases in

- (2) Gaberdiel, Kausch, 1996; Eberle, Flohr, 2006 (Gaberdiel–Kausch–Nahm algorithm)
- (3) Read, Saleur, 2007 using quantum-group symmetries in XXZ models at a root of unity and fusion procedure of Temperley–Lieb algebra representations.

• We propose using the Kazhdan–Lusztig duality in calculating the fusion rules for the subset $\mathcal{LM}(1,p)$ of the $\mathcal{LM}(p,p')$ models.

We construct a quantum group dual to the Virasoro algebra \mathcal{V}_p from $\mathcal{LM}(1,p)$ as an extension of $\overline{\mathcal{U}}_{q} s\ell(2)$ dual to the triplet algebra \mathcal{W}_{p} .

- This quantum group is the Lusztig limit $\mathcal{L} \mathcal{U}_q s \ell(2)$ of the usual quantum $s\ell(2)$ as $\mathfrak{q} \to e^{i\pi/p}$ and
- has the set of irreducible representations $\mathfrak{X}_{s,r}^{\alpha}$, where $1 \leq s \leq p$ and $\alpha = \pm$ are $\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)$ h.w. parameters and $\frac{r-1}{2}$, $r \in \mathbb{N}$, is the $s\ell(2)$ spin.
- The module $\mathfrak{X}^{\alpha}_{s,r}$ is a tensor product of s-dimensional irreducible $\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)$ and r-dimensional irreducible $s\ell(2)$ -modules.
- To each $\mathfrak{X}^{\alpha}_{s,r}$, a projective cover $\mathcal{P}^{\alpha}_{s,r}$ corresponds and $\mathcal{P}^{\alpha}_{p,r} = \mathfrak{X}^{\alpha}_{p,r}$.

We construct a quantum group dual to the Virasoro algebra \mathcal{V}_p from $\mathcal{LM}(1,p)$ as an extension of $\overline{\mathcal{U}}_q s\ell(2)$ dual to the triplet algebra \mathcal{W}_p .

- The set of irreducible $\mathfrak{X}^{\alpha}_{s,r}$ and projective modules $\mathfrak{P}^{\alpha}_{s,r}$ is closed under tensor products.
- the Pearce–Rasmussen fusion of irreducible and logarithmic V_p -representations **coincides** with tensor products of $\mathcal{L}\mathcal{U}_q s\ell(2)$ irreducible and projective modules.

between the irreducible and projective modules are

$$
\mathfrak{X}^{\alpha}_{s_1,r_1} \otimes \mathfrak{P}^{\beta}_{s_2,r_2} = \bigoplus_{r=|r_1-r_2|+1}^{r_1+r_2-1} \left(\bigoplus_{\substack{s=|s_1-s_2|+1\\step=2}}^{2p-s_1-s_2-1} \mathfrak{P}^{\alpha\beta}_{s,r} + 2 \bigoplus_{\substack{s=|s_1-s_2|+1\\step=2}}^{p-\gamma_2} \mathfrak{P}^{\alpha\beta}_{s,r} \right) + 2 \bigoplus_{\substack{r=|r_1-r_2|\\step=2}}^{r_1+r_2} \bigoplus_{\substack{s=|r_1-r_2|\\step=2}}^{p-\gamma_1} \mathfrak{P}^{-\alpha\beta}_{s,r},
$$

and between the projective modules are

$$
\mathcal{P}^{\alpha}_{s_1,r_1} \otimes \mathcal{P}^{\beta}_{s_2,r_2} = 2 \bigoplus_{\substack{r=|r_1-r_2|+1 \ s=|s_1-s_2|+1}}^{r_1+r_2-1} \left(\bigoplus_{\substack{s=|s_1-s_2|+1 \ s \neq p=2}}^{2p-s_1-s_2-1} \mathcal{P}^{\alpha\beta}_{s,r} + 2 \bigoplus_{\substack{s=2p-s_1-s_2+1 \ s\neq p=2}}^{p-\gamma_2} \mathcal{P}^{\alpha\beta}_{s,r} \right)
$$

\n
$$
+ 2 \bigoplus_{\substack{r=|r_1-r_2| \ s=|r-s_1-s_2|+1}}^{r_1+r_2} \left(\bigoplus_{\substack{s=|r-s_1-s_2|+1 \ s \neq m(p-s_1+s_2+1)}}^{p-\gamma_1} \mathcal{P}^{-\alpha\beta}_{s,r} \right) + 4 \bigoplus_{\substack{r=|r_1-r_2|-1 \ s=|r_1-s_2+1 \ s\neq p=2}}^{p-\gamma_2} \mathcal{P}^{\alpha\beta}_{s,r},
$$

\nwhere we set $\gamma_1 = (s_1 + s_2 + 1) \text{mod } 2, \ \gamma_2 = (s_1 + s_2 + p + 1) \text{mod } 2.$

Introduction. We thus have

• the $\mathcal{L}U_qs\ell(2)$ representation category is **equivalent** as a tensor category to the category of Virasoro algebra representations appearing in $\mathcal{LM}(1,p).$

Irreducible and projective modules are identified in the following way

$$
\mathfrak{X}_{s,2r-1}^+ \to (2r-1,s), \qquad \mathfrak{X}_{s,2r}^- \to (2r,s),
$$

\n
$$
\mathfrak{P}_{s,2r-1}^+ \to \mathcal{R}_{2r-1}^{p-s}, \qquad \mathfrak{P}_{p-s,2r}^- \to \mathcal{R}_{2r}^s, \quad 1 \leq s \leq p, \quad r \geq 1,
$$

where (r, s) are the irreducible Virasoro modules with the heighest weights

$$
\Delta_{r,s} = ((pr - s)^2 - (p - 1)^2)/4p
$$

and the \mathcal{R}_r^s are logarithmic Virasoro modules from $\mathcal{LM}(1,p)$.

Quantum groups as centralizers of chiral algebras.

The QGs dual to Log models $\mathcal{LM}(1,p)$ as well as $WLM(1,p)$ can be constructed in the Coulomb gas picture

$$
\varphi(z)\varphi(w)=\log(z-w)
$$

with the energy-momentum tensor

$$
T = \frac{1}{2}\partial\varphi\partial\varphi + \frac{\alpha_0}{2}\partial^2\varphi,
$$

where the background charge $\alpha_0 = \alpha_+ + \alpha_- = \sqrt{2p} - \sqrt{2/p}$.

- Chiral algebras and corr. QGs are mutual **maximal centralizers** of each other on a chiral space of states.
- There are two screening operators ("long" and "short")

$$
e = \oint e^{\sqrt{2p}\,\varphi(z)}dz \quad \text{and} \quad F = \oint e^{-\sqrt{\frac{2}{p}}\,\varphi(z)}dz
$$

commuting with V_p .

The centralizer of \mathcal{W}_p .

The quantum group $\overline{\mathcal{U}}_{q} s\ell(2)$ **commutes** with the triplet algebra \mathcal{W}_p action on "full" chiral space of states.

• the chiral algebras W_p realized in the $WLM(1, p)$ models admit $s\ell(2)$ action by symmetries:

 $W^{-}(z) := e^{-}$ $\sqrt{2p}\varphi(z), \quad W^0(z) := [e, W^-(z)], \quad W^+(z) := [e, W^0(z)],$

where *e* is the long screening operator $\oint e^{\sqrt{2p}\varphi} dz$ (see FHST, 2004)

- the short screening F commutes with the chiral algebra \mathcal{W}_p
- and generates the lower-triangular part of the $\overline{\mathcal{U}}_{q} s\ell(2)$ with the relation $F^p = 0.$

The centralizer of \mathcal{W}_p .

Construction of $\overline{\mathcal{U}}_{\mathfrak{g}} s\ell(2)$:

(1) Hopf algebra of the short screening $F = \oint e^{-\frac{1}{2}A}$ $\sqrt{\frac{2}{p}}\varphi(z)$ dz and the Kartan $K = e^{-i\pi\alpha - \varphi_0}$, where φ_0 is the zero-mode of $\partial \varphi(z)$.

Hopf-algebra structure is found from the action of these operators on fields: *comultiplication* is calculated from the action of F and K on OPE of fields.

- (2) Drinfeld double \longrightarrow contour-removal operator E (dual to F) and additional Kartan \bar{K} .
- (3) the quantum group $\overline{\mathcal{U}}_{q} s\ell(2)$ is realized as a quotient of the Drinfeld double

The centralizer of \mathcal{W}_p .

The "restricted" quantum group $\overline{\mathcal{U}}_{q} s\ell(2)$ with $\mathfrak{q} = e^{i\pi/p}$ and the three generators E , F , and K satisfying the standard relations

> $KEK^{-1} = \mathfrak{q}^2 E, \quad KFK^{-1} = \mathfrak{q}^{-2} F, \quad [E, F] = \frac{K - K^{-1}}{g - g^{-1}}$ $\mathfrak{q}-\mathfrak{q}^{-1}$,

with some additional constraints,

$$
E^p = F^p = 0, \quad K^{2p} = \mathbf{1},
$$

and the Hopf-algebra structure is given by

$$
\Delta(E) = \mathbf{1} \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes \mathbf{1}, \quad \Delta(K) = K \otimes K,
$$

$$
S(E) = -EK^{-1}, \quad S(F) = -KF, \quad S(K) = K^{-1},
$$

$$
\epsilon(E) = \epsilon(F) = 0, \quad \epsilon(K) = 1.
$$

To construct a QG dual to the Virasoro algebra \mathcal{V}_p from $\mathcal{LM}(1,p)$, we first note that

• Irreducible representations of the triplet algebra \mathcal{W}_p admit two commuting actions, $s\ell(2)$ - and \mathcal{V}_p -actions (FGST, 2006):

Considering the deformation

$$
F_{\epsilon} = \oint e^{(-\sqrt{\frac{2}{p}} + \epsilon)\varphi(z)} dz \qquad \longrightarrow \qquad f = \lim_{\epsilon \to 0} \frac{F_{\epsilon}^p}{\epsilon},
$$

The operators $e = \oint e^{\sqrt{2p}\varphi} dz$ and f generate the usual $s\ell(2)$.

We thus have the $s\ell(2)$ -generators:

$$
h = \frac{1}{\sqrt{2p}} \varphi_0, \qquad e = \oint e^{\sqrt{2p} \varphi(z)} dz, \qquad \text{and} \qquad f = \lim_{\epsilon \to 0} \frac{F_{\epsilon}^p}{\epsilon}.
$$

• Invariants of the $s\ell(2)$ -action is the universal enveloping of the Virasoro algebra \mathcal{V}_p .

These points suggest a construction of the maximal centralizer for \mathcal{V}_p as an <u>extension</u> of the centralizer $\overline{\mathcal{U}}_q s\ell(2)$ for the triplet algebra \mathcal{W}_p by the $s\ell(2)$ triplet (e, h, f) .

To obtain a Hopf-algebra structure on $\mathcal{L}U_qs\ell(2)$, we use the purely algebraic approach following Lusztig:

- the quantum group $\mathcal{L}U_q s\ell(2)$ is a limit of the quantum group $U_q(s\ell(2))$ as $\mathfrak{q} \to e^{\frac{i\pi}{p}}$.
- There is an evident limit in which E^p , F^p and K^p become central

To obtain a Hopf-algebra structure on $\mathcal{L}\mathcal{U}_q s\ell(2)$, we use the purely algebraic approach following Lusztig:

• but we consider another limit in which the relations

$$
E^p = F^p = 0, \quad K^{2p} = 1
$$

are imposed but the generators

$$
e = \frac{E^p}{[p]!}
$$
 and $f = \frac{F^p}{[p]!}$, $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$,

are kept in the limit.

In the limit $\mathfrak{q} \to e^{\frac{i\pi}{p}}$, we have $[p]! = 0$ and the ambiguity $\frac{0}{0}$ is solved in such a way that the e and f become generators of the ordinary $s\ell(2)$.

We thus obtain a Hopf algebra $\mathcal{L}U_qs\ell(2)$ that contains the quantum group $\overline{\mathcal{U}}_{q} s\ell(2)$ as a Hopf ideal and the quotient is the $U(s\ell(2))$, the universal enveloping of the $s\ell(2)$.

The Hopf-algebra structure on $\mathcal{L}\mathcal{U}_q s\ell(2)$ is the following. The defining relations between the E, F, and K generators are the same as in $\overline{\mathcal{U}}_{q} s\ell(2)$ and the usual $s\ell(2)$ relations between the e, f, and h:

$$
[h, e] = e,
$$
 $[h, f] = -f,$ $[e, f] = 2h,$

and the "mixed" relations

$$
[h, K] = 0, \t [E, e] = 0, \t [K, e] = 0, \t [F, f] = 0, \t [K, f] = 0,
$$

$$
[F, e] \sim (\mathfrak{q}K - \mathfrak{q}^{-1}K^{-1}) E^{p-1},
$$

$$
[E, f] \sim (\mathfrak{q}K - \mathfrak{q}^{-1}K^{-1}) F^{p-1},
$$

$$
[h, E] = \frac{1}{2}EA, \t [h, F] = -\frac{1}{2}AF,
$$

where A is a projector.

The comultiplication in $\mathcal{L}\mathcal{U}_q s\ell(2)$ is

$$
\Delta(e) = e \otimes 1 + K^p \otimes e + \frac{1}{[p-1]!} \sum_{r=1}^{p-1} \frac{\mathfrak{q}^{r(p-r)}}{[r]} K^p E^{p-r} \otimes E^r K^{-r},
$$

$$
\Delta(f) = f \otimes 1 + K^p \otimes f + \frac{(-1)^p}{[p-1]!} \sum_{s=1}^{p-1} \frac{\mathfrak{q}^{-s(p-s)}}{[s]} K^{p+s} F^s \otimes F^{p-s},
$$

an explicit form of $\Delta(h) = \frac{1}{2} [\Delta(e), \Delta(f)]$ is very bulky and we do not give it here.

The antipode S and the counity ϵ are

$$
S(e) = -Kpe, \t S(f) = -Kpf, \t S(h) = -h,
$$

$$
\epsilon(e) = \epsilon(f) = \epsilon(h) = 0.
$$

Indecomposable $\mathcal{L}\mathcal{U}_q s\ell(2)$ -modules and Feigin–Fuchs modules.

 $\mathcal{W}_{s,r}^{\pm}(n)$: The module $\mathcal{W}_{s,r}^{\pm}(n)$ has the following subquotient structure

where *n* is the number of the bottom modules (filled dots \bullet).

 $\mathbf{\mathcal{M}}^\pm_{s,r}(n)$: The module $\mathbf{\mathcal{M}}^\pm_{s,r}(n)$ has the following subquotient structure

where *n* is the number of the top modules (open dots \circ). The $\mathcal{M}_{s,r}^{\pm}(n)$ modules are contragredient to the $\mathcal{W}_{s,r}^{\pm}(n)$ modules.

Indecomposable $\mathcal{L}\mathcal{U}_\mathfrak{q} s\ell(2)$ -modules and Feigin–Fuchs modules. Irreducible modules are identified in the following way

$$
\mathfrak{X}^+_{s,2r-1} \to (2r-1,s), \qquad \mathfrak{X}^-_{s,2r} \to (2r,s),
$$

where (r, s) are the irreducible Virasoro modules with the heighest weights

$$
\Delta_{r,s} = ((pr - s)^2 - (p - 1)^2)/4p.
$$

Indecomposable $\mathcal{L}\mathcal{U}_q s\ell(2)$ -modules and Feigin–Fuchs modules.

 $\mathcal{N}^\pm_{s,r}(n)$: The module $\mathcal{N}^\pm_{s,r}(n)$ has the following subquotient structure

where *n* is the number of the top modules (open dots \circ) and at the same time the number of the bottom modules (filled dots \bullet). $\overline{\mathbf{\mathcal{N}}}_{s,r}^{\pm}(n)$: The module $\overline{\mathcal{N}}_{s,r}^{\pm}(n)$ has the following subquotient structure

where *n* is the number of the bottom modules (filled dots \bullet) and at the same time the number of the top modules (open dots \circ).

The introduced four infinite series of indecomposable modules $\mathcal{W}^{\pm}_{s,r}(n)$, $\mathfrak{M}^\pm_{s,r}(n), \mathfrak{N}^\pm_{s,r}(n)$, and $\overline{\mathfrak{N}}^\pm_{s,r}(n)$ can be used in construction of the Felder type resolutions and projective resolutions.

Projective $\mathcal{L}\mathcal{U}_q s\ell(2)$ -modules.

The projective cover $\mathcal{P}^{\pm}_{s,1}$ for the irreducible module $\mathcal{X}^{\pm}_{s,1}$ has the subquotient structure:

Projective $\mathcal{L}\mathcal{U}_q s\ell(2)$ -modules.

The projective cover $\mathcal{P}^{\pm}_{s,r}$ for the irreducible $\mathfrak{X}^{\pm}_{s,r}$ has the subquotient structure:

Conclusions.

Relations to Virasoro fusion algebra:

- We identify $\mathcal{L} \mathcal{U}_q s\ell(2)$ irreducible and projective modules with irreducible and logarithmic modules of the Virasoro algebra V_p .
- Under this identification, tensor products of $\mathcal{L}\mathcal{U}_q s\ell(2)$ -modules coincide with the fusion of the corresponding modules of Gaberdiel and Kausch, and from Pearce and Rasmussen works; and also from recent works of Read and Saleur.
- There exists a tensor functor from "our" category to the category of V_p -modules with dimension of L_0 Jordan cells not greater than 2.

Conclusions.

Relations to Virasoro fusion algebra:

- There exists a tensor functor from "our" category to the category of V_p -modules with dimension of L_0 Jordan cells not greater than 2.
- The functor establishes a 1-to-1 correspondence between simple objects of two categories but **is not** an equivalence because the Virasoro category contains more indecomp objects. In particular, Virasoro Verma modules have no counterpart on the QG side; \mathcal{V}_n also admits a class of modules with two dimensional L_0 Jordan cells enumerated by a projective parameter. All these modules have the same subquotient structure nevertheless are parawise different and only modules with a special value of the parameter has a counterpart on the QG side.