
Fusion in Virasoro logarithmic models

and the Kazhdan–Lusztig correspondence

AM Gainutdinov

Lebedev Physics Institute, Moscow

joint work with Bushlanov, Feigin, and Tipunin

arXiv:0901.1602 [hep/th]

Institut für Theoretische Physik
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Introduction.

LCFTs most naturally appear as

• a scaling limit of nonlocallattice models (Pearce, Rasmussen, and

Zuber, 2006);

• and in quantum chains with a nondiagonalizable Hamiltonian(Read,
Saleur, 2007).

Generally speaking, a CFT appearing at the limit depends

• on a way of taking the limit and

• on chosen boundary conditions.



Introduction.

Generally speaking, a CFT appearing at the limit depends on away of

taking the limit and on chosen boundary conditions.

For proper choice of boundary conditions

the lattice models of PRZ —-> Log modelsWLM(p, p′) with

thetriplet Wp,p′-algebra of symmetry

(FGST, 2006; and forp′ = 1 by Kausch andFHST)

The chiral algebraWp,p′ is an extension of the vacuum module of the

Virasoro algebraVp,p′ with the central chargecp,p′ = 13− 6p/p′− 6p′/p by

a triplet of the Virasoro primary fields with conformal dimension∆1,3.



Introduction.

The most investigated models areWLM(p, 1).

For this set of models, the representation categories of

• the triplet algebraWp

• and of the finite-dimensional quantum groupUqs`(2) with q = eiπ/p

(FGST, 2005)

areequivalentastensor categories (FGST2 (2005), forp = 2; and

by Nagatomo and Tsuchiya (2009),Adamovic and Milas (2009),

as abelian categories)



Introduction.

Categories ofWp- and Uqs`(2)-modules areequivalent as tensor cate-

gories

This is the manifestation of the Kazhdan–Lusztig duality:

(1) there is a one-to-one correspondence between representations;

(2) fusion rules of a conformal model can be calculated by tensor products

of a quantum group representations

(3) and the modular group action generated from chiral characters coin-

cides with the one on the center of the corresponding quantumgroup.

In the logarithmic modelsWLM(1, p), the Kazhdan–Lusztig duality is

presented in itsfull strength .



Introduction.

For general coprimep andp′, the modelsWLM(p, p′) also demonstrate

the Kazhdan–Lusztig duality with the quantum group

gp,p′ =
Uqs`(2) ⊗ Uq′s`(2)

Hopf ideal
, q = eiπ/p and q

′ = eiπ/p′

but relation between thegp,p′ and theWp,p′ algebra is more subtle.

There isno one-to-one correspondence between representations but

• the modular group action on the center ofgp,p′ (FGST, 06)

coincideswith

• the one on chiral characters in theWp,p′ theory

and an open question about fusion...



Introduction.

Other choice of boundary conditions in the lattice models ofPRZ

—-> Log modelsLM(p, p′) with the Virasoro symmetryVp,p′.

Fusion rules for these models were calculated in

(1) Pearce, Rasmussen, 2007 (lattice approach)

and for some cases in

(2) Gaberdiel, Kausch, 1996;

Eberle, Flohr, 2006 (Gaberdiel–Kausch–Nahm algorithm)

(3) Read, Saleur, 2007 — using quantum-group symmetries in XXZ

models at a root of unityand fusion procedure of Temperley–Lieb al-

gebra representations.



Introduction.

• We propose using the Kazhdan–Lusztig duality in calculating

the fusion rules for the subsetLM(1, p) of theLM(p, p′) models.



Introduction.

We construct a quantum group dual to the Virasoro algebraVp fromLM(1, p)

as an extension ofUqs`(2) dual to the triplet algebraWp.

• This quantum group is the Lusztig limitLUqs`(2) of the usual quan-

tums`(2) asq → eiπ/p and

• has the set of irreducible representationsXα
s,r, where1 6 s6 p and

α = ± areUqs`(2) h.w. parameters andr−1
2 , r ∈ N, is thes`(2) spin.

• The moduleXα
s,r is a tensor product ofs-dimensional irreducibleUqs`(2)-

andr-dimensional irreducibles`(2)-modules.

• To eachXα
s,r, a projective coverPα

s,r corresponds andPα
p,r = Xα

p,r.



Introduction.

We construct a quantum group dual to the Virasoro algebraVp fromLM(1, p)

as an extension ofUqs`(2) dual to the triplet algebraWp.

• The set of irreducibleXα
s,r and projective modulesPα

s,r is closed under

tensor products.

• the Pearce–Rasmussen fusionof irreducible and logarithmicVp-rep-

resentationscoincideswith tensor products ofLUqs`(2) irreducible

and projective modules.



Theorem. The tensor products between irreducible LUqs`(2)-modules are

X
α
s1,r1

⊗ X
β
s2,r2

=

r1+r2−1
⊕

r=|r1−r2|+1
step=2

(

min(s1+s2−1,
2p−s1−s2−1)

⊕

s=|s1−s2|+1
step=2

X
αβ
s,r +

p−γ2
⊕

s=2p−s1−s2+1
step=2

P
αβ
s,r

)

between the irreducible and projective modules are

X
α
s1,r1

⊗P
β
s2,r2

=

r1+r2−1
⊕

r=|r1−r2|+1
step=2

(

min(s1+s2−1,
2p−s1−s2−1)

⊕

s=|s1−s2|+1
step=2

P
αβ
s,r+2

p−γ2
⊕

s=2p−s1−s2+1
step=2

P
αβ
s,r

)

+2

r1+r2
⊕

′

r=|r1−r2|
step=2

p−γ1
⊕

s=p−s1+s2+1
step=2

P
−αβ
s,r ,

and between the projective modules are

P
α
s1,r1

⊗ P
β
s2,r2

= 2

r1+r2−1
⊕

r=|r1−r2|+1
step=2

(

min(s1+s2−1,
2p−s1−s2−1)

⊕

s=|s1−s2|+1
step=2

P
αβ
s,r + 2

p−γ2
⊕

s=2p−s1−s2+1
step=2

P
αβ
s,r

)

+2

r1+r2
⊕

′

r=|r1−r2|
step=2

(

min(p−s1+s2−1,
p+s1−s2−1)

⊕

s=|p−s1−s2|+1
step=2

P
−αβ
s,r +2

p−γ1
⊕

s=min(p−s1+s2+1,
p+s1−s2+1)

P
−αβ
s,r

)

+ 4

r1+r2+1
⊕

′′

r=|r1−r2|−1
step=2

p−γ2
⊕

s=s1+s2+1
step=2

P
αβ
s,r,

where we set γ1 = (s1 + s2 + 1)mod 2, γ2 = (s1 + s2 + p + 1)mod 2.



Introduction. We thus have

• theLUqs`(2) representation category isequivalent as a tensor cate-

gory to the category of Virasoro algebra representations appearing in

LM(1, p).

Irreducible and projective modules are identified in the following way

X
+
s,2r−1 → (2r − 1, s), X

−
s,2r → (2r, s),

P
+
s,2r−1 → Rp−s

2r−1, P
−
p−s,2r → Rs

2r, 1 6 s6 p, r > 1,

where(r, s) are the irreducible Virasoro modules with the heighest weights

∆r,s = ((pr − s)2 − (p − 1)2)/4p

and theRs
r are logarithmic Virasoro modules fromLM(1, p).



Quantum groups as centralizers of chiral algebras.

The QGs dual to Log modelsLM(1, p) as well asWLM(1, p) can be

constructed in the Coulomb gas picture

ϕ(z)ϕ(w) = log(z − w)

with the energy-momentum tensor

T = 1

2
∂ϕ∂ϕ + α0

2
∂2ϕ,

where the background chargeα0 = α+ + α− =
√

2p −
√

2/p.

• Chiral algebras and corr. QGs are mutualmaximal centralizers of

each other on a chiral space of states.

• There are two screening operators (“long” and “short”)

e =

∮

e
√

2p ϕ(z)dz and F =

∮

e
−

√

2
p ϕ(z)

dz

commuting withVp.



The centralizer ofWp.

The quantum groupUqs`(2) commuteswith the triplet algebraWp action

on “full” chiral space of states.

• the chiral algebrasWp realized in theWLM(1, p) models admits`(2)-

action by symmetries:

W−(z) := e−
√

2pϕ(z), W 0(z) := [e, W−(z)], W +(z) := [e, W 0(z)],

wheree is the long screening operator
∮

e
√

2pϕdz (seeFHST, 2004)

• the short screeningF commutes with the chiral algebraWp

• and generates the lower-triangular part of theUqs`(2) with the relation

F p = 0.



The centralizer ofWp.

Construction ofUqs`(2):

(1) Hopf algebra of the short screeningF =
∮

e
−

√

2
pϕ(z)

dz and the Kartan

K = e−iπα−ϕ0, whereϕ0 is the zero-mode of∂ϕ(z).

Hopf-algebra structure is found from the action of these operators on

fields: comultiplication is calculated from the action ofF andK on

OPE of fields.

(2) Drinfeld double —-> contour-removal operatorE (dual to F ) and

additional KartanK̄.

(3) the quantum groupUqs`(2) is realized as a quotient of the Drinfeld

double



The centralizer ofWp.

The “restricted” quantum groupUqs`(2) with q = eiπ/p and the three gen-

eratorsE, F , andK satisfying the standard relations

KEK−1 = q
2E, KFK−1 = q

−2F, [E, F ] = K − K−1

q − q−1
,

with some additional constraints,

Ep = F p = 0, K2p = 1,

and the Hopf-algebra structure is given by

∆(E) = 1 ⊗ E + E ⊗ K, ∆(F ) = K−1 ⊗ F + F ⊗ 1, ∆(K) = K ⊗ K,

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1,

ε(E) = ε(F ) = 0, ε(K) = 1.



The centralizer of Vp.

To construct a QG dual to the Virasoro algebraVp fromLM(1, p), we first

note that

• Irreducible representations of the triplet algebraWp admit two com-

muting actions,s`(2)- andVp-actions (FGST, 2006):

Considering the deformation

Fε =

∮

e
(−

√

2
p+ε)ϕ(z)

dz −→ f = lim
ε→0

F p
ε

ε
,

The operatorse =
∮

e
√

2pϕdz andf generate the usuals`(2).



The centralizer of Vp.

We thus have thes`(2)-generators:

h = 1√
2p

ϕ0, e =

∮

e
√

2pϕ(z)dz, and f = lim
ε→0

F p
ε

ε
.

• Invariants of thes`(2)-action is the universal enveloping of the Vira-

soro algebraVp.

These points suggest a construction of the maximal centralizer forVp as

an extensionof the centralizerUqs`(2) for the triplet algebraWp by the

s`(2) triplet (e, h, f ).



The centralizer of Vp.

To obtain a Hopf-algebra structure onLUqs`(2), we use the purely alge-

braic approach following Lusztig:

• the quantum groupLUqs`(2) is a limit of the quantum groupUq(s`(2))

asq → e
ıπ
p .

• There is an evident limit in whichEp, F p andKp become central



The centralizer of Vp.

To obtain a Hopf-algebra structure onLUqs`(2), we use the purely alge-

braic approach following Lusztig:

• but we consider another limit in which the relations

Ep = F p = 0, K2p = 1

are imposed but the generators

e =
Ep

[p]!
and f =

F p

[p]!
, [n] = q

n − q
−n

q − q−1
,

are kept in the limit.

In the limit q → e
ıπ
p , we have[p]! = 0 and the ambiguity0

0
is solved in

such a way that thee andf become generators of the ordinarys`(2).



The centralizer of Vp.

We thus obtain a Hopf algebraLUqs`(2) that contains the quantum group

Uqs`(2) as a Hopf ideal and the quotient is theU(s`(2)), the universal

enveloping of thes`(2).



The centralizer of Vp.

The Hopf-algebra structure onLUqs`(2) is the following. The defining

relations between theE, F , andK generators are the same as inUqs`(2)

and the usuals`(2) relations between thee, f , andh:

[h, e] = e, [h, f ] = −f, [e, f ] = 2h,

and the “mixed” relations

[h, K] = 0, [E, e] = 0, [K, e] = 0, [F, f ] = 0, [K, f ] = 0,

[F, e] ∼ (qK − q
−1K−1) Ep−1,

[E, f ] ∼ (qK − q
−1K−1) F p−1,

[h, E] =
1

2
EA, [h, F ] = −1

2
AF,

whereA is a projector.



The centralizer of Vp.

The comultiplication inLUqs`(2) is

∆(e) = e ⊗ 1 + Kp ⊗ e + 1

[p − 1]!

p−1
∑

r=1

q
r(p−r)

[r]
KpEp−r ⊗ ErK−r,

∆(f) = f ⊗ 1 + Kp ⊗ f + (−1)p

[p − 1]!

p−1
∑

s=1

q
−s(p−s)

[s]
Kp+sF s ⊗ F p−s,

an explicit form of∆(h) = 1
2[∆(e), ∆(f)] is very bulky and we do not give

it here.

The antipodeS and the counityε are

S(e) = −Kpe, S(f) = −Kpf, S(h) = −h,

ε(e) = ε(f) = ε(h) = 0.



IndecomposableLUqs`(2)-modules and Feigin–Fuchs modules.

W
±

s,r
(n): The moduleW±

s,r(n) has the following subquotient structure

X±
s,r◦ x

!!

X
±
s,r+2◦x

||

x
""

. . .
x

}}

x
##

X
±
s,r+2n◦x

zz

X
∓
p−s,r+1•

X
∓
p−s,r+3•

. . . X
∓
p−s,r+2n−1•

wheren is the number of the bottom modules (filled dots•).

M±

s,r
(n): The moduleM±

s,r(n) has the following subquotient structure

X
∓
p−s,r+1◦x

��

x
��

X
∓
p−s,r+3◦x

��

x
��

. . .
x
��

x
��

X
∓
p−s,r+2n−1◦x

||

x
!!

X±
s,r•

X
±
s,r+2•

X
±
s,r+4•

. . . X
±
s,r+2n−2•

X
±
s,r+2n•

wheren is the number of the top modules (open dots◦). TheM±
s,r(n)

modules are contragredient to theW±
s,r(n) modules.



IndecomposableLUqs`(2)-modules and Feigin–Fuchs modules.

Irreducible modules are identified in the following way

X
+
s,2r−1 → (2r − 1, s), X

−
s,2r → (2r, s),

where(r, s) are the irreducible Virasoro modules with the heighest weights

∆r,s = ((pr − s)2 − (p − 1)2)/4p.



IndecomposableLUqs`(2)-modules and Feigin–Fuchs modules.

N
±

s,r
(n): The moduleN±

s,r(n) has the following subquotient structure

X
∓
p−s,r+1◦x

__

x
��

X
∓
p−s,r+3◦x

��

x
��

. . .
x
��

x
��

X
∓
p−s,r+2n−1◦x

{{

X±
s,r•

X
±
s,r+2•

X
±
s,r+4•

. . . X
±
s,r+2n−2•

wheren is the number of the top modules (open dots◦) and at the

same time the number of the bottom modules (filled dots•).

N
±

s,r
(n): The moduleN

±
s,r(n) has the following subquotient structure

X±
s,r◦ x

��

X
±
s,r+2◦x

��

x
��

. . .
x
��

x
��

X
±
s,r+2n−2◦x

||

x
""

X
∓
p−s,r+1•

X
∓
p−s,r+3•

. . . X
∓
p−s,r+2n−3•

X
∓
p−s,r+2n−1•

wheren is the number of the bottom modules (filled dots•) and at the

same time the number of the top modules (open dots◦).

The introduced four infinite series of indecomposable modulesW±
s,r(n),

M±
s,r(n), N±

s,r(n), andN
±
s,r(n) can be used in construction of the Felder type

resolutions and projective resolutions.



Projective LUqs`(2)-modules.

The projective coverP±
s,1 for the irreducible moduleX±

s,1 has the subquo-

tient structure:

X
±
s,1•
��

X
∓
p−s,2◦

��

X
±
s,1•



Projective LUqs`(2)-modules.

The projective coverP±
s,r for the irreducibleX±

s,r has the subquotient struc-

ture:

X±
s,r•

{{ ##

X
∓
p−s,r−1◦

��

X
∓
p−s,r+1◦

��

X±
s,r•



Conclusions.

Relations to Virasoro fusion algebra:

• We identify LUqs`(2) irreducible and projective modules with irre-

ducible and logarithmic modules of the Virasoro algebraVp.

• Under this identification, tensor products ofLUqs`(2)-modules coin-

cide with the fusion of the corresponding modules of Gaberdiel and

Kausch, and from Pearce and Rasmussen works; and also from recent

works of Read and Saleur.

• There exists a tensor functor from “our” category to the category of

Vp-modules with dimension ofL0 Jordan cells not greater than2.



Conclusions.

Relations to Virasoro fusion algebra:

• There exists a tensor functor from “our” category to the category of

Vp-modules with dimension ofL0 Jordan cells not greater than2.

• The functor establishes a 1-to-1 correspondence between simple ob-

jects of two categories butis not an equivalence because the Vira-

soro category contains more indecomp objects. In particular, Virasoro

Verma modules have no counterpart on the QG side;Vp also admits a

class of modules with two dimensionalL0 Jordan cells enumerated by

a projective parameter. All these modules have the same subquotient

structure nevertheless are parawise different and only modules with a

special value of the parameter has a counterpart on the QG side.


