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Logarithmic operators

L0

(
C
D

)
=

(
λ 0
1 λ

) (
C
D

)
Logarithmic pair C, D

〈C(z) C(w)〉 = 0

〈C(z) D(w)〉 =
1

(z − w)2λ

〈D(z) D(w)〉 = −2 ln(z − w)
(z − w)2λ

Correlation functions consistent with (and following from) 
the Jordan block structure for L0 

C must have zero norm
C and D correlate like 

“normal” operators

-2 is enforced by 
conformal invariance
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Self-avoiding random walks (SARW)

Wiener-Feynman, 
30-40s:

The probability of observing a 
particle undergoing Brownian 
motion at a point x at a time t

P (t, x) =
∫ x(t)=x

x(0)=0
Dx(t) e−

1
D

R t
0 dt ẋ2

µ

P (t, x) ∼ e−
x2
Dt

〈
x2

〉
∼ Dt

These are messy details, but the bottom line is clear: P(t,x) is some sort of a 
Green’s function of an interacting critical theory, with ω (Fourier of t) a relevant 

perturbation
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SARW/polymers: Polymers are penalized energetically when they intersect themselves 
(Flory, de Gennes & others, 60s-70s)

P (t, x) =
∫ x(t)=x

x(0)=0
Dx(t) e−

1
D

R t
0 dt ẋ2

µ−
g
2

R
dtdt′ δ("x(t)−"x′(t))

Hard to solve, but the following scaling ansatz helps

〈
x2

〉
∼ t

2γ
2−η

P (ω, k) ∼ 1
k2−η

f

(
ω − ωc

k
2−η

γ

)



SARW: Effective field theory

−g { + }++g2

Perturbative expansion

1
iω + D ∂2

∂x2 − iV (x)

is reproduced by the expansion of this Green’s function with a random imaginary 
potential i V(x) in powers of V(x) 

〈V (x)V (y)〉 = g δ(x − y)

P (ω, x) =
∫
DφDφ̄ φ(x) φ̄(0) e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ

∫
DφDφ̄ e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ
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P (t, x) =
∫ x(t)=x

x(0)=0
Dx(t) e−

1
D

R t
0 dt ẋ2

µ−
g
2

R
dtdt′ δ("x(t)−"x′(t))



Random potentials: replica approach

〈V (x)V (y)〉 = g δ(x − y)
Random potential

P (ω, x) =
∫
DφDφ̄ φ(x) φ̄(0) e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ

∫
DφDφ̄ e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ

Introduce n replicas

P (ω, x) =
∫ ∏n

i=1DφiDφ̄i φ1(x) φ̄1(0) e
Pn

i=1
R

d2x φ̄i

“
D ∂2

∂x2−iV +iω
”

φi

[∫
DφDφ̄ e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ
]n

take n to zero

P (ω, x) = lim
n→0

∫ n∏

i=1

DφiDφ̄i φ1(x) φ̄1(0) e
Pn

i=1
R

d2x φ̄i

“
D ∂2

∂x2−iV +iω
”

φi

This is the famous O(n) model in the n→0 limit

and finally average over random potential

P (ω, x) = lim
n→0

∫ n∏

i=1

DφiDφ̄i φ1(x) φ̄1(0) e
−

R
d2x

hPn
i=1 D∂µφ̄i∂µφi−iωφ̄iφi+

g
2 (

Pn
i=1 φ̄iφi)2

i
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Random potentials: “supersymmetry 
approach”

〈V (x)V (y)〉 = g δ(x − y)P (ω, x) =
∫
DφDφ̄ φ(x) φ̄(0) e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ

∫
DφDφ̄ e

R
d2x φ̄

“
D ∂2

∂x2−iV +iω
”

φ
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Average over random potential, to find 
effective field theory with the action

S =
∫

d2x
[
D

(
∂µφ̄ ∂µφ + ∂µψ̄ ∂µψ

)
+

g

2
(
φ̄φ + ψ̄ψ

)2
]

We would like to study CFTs corresponding to the 
field theories of this type. All have c=0. 

Introduce fermionic fields ψ



“Supersymmetric” critical theories 8

• Supersymmetric effective field theories describe a variety 
of interesting critical behavior in 2 dimensions. Most have 

not been understood.

• Examples include self-avoiding random walks and 
percolation (mostly understood, although not completely) 
and quantum motion in random potentials under various 
conditions (mostly not understood).

• Most famous example, the quantum Hall transition, has 
been extensively studied, and yet is not understood. 



Supersymmetry 9

S =
∫

d2x
[
D

(
∂µφ̄ ∂µφ + ∂µψ̄ ∂µψ

)
+

g

2
(
φ̄φ + ψ̄ψ

)2
]A typical action

(
φ′

ψ′

)
=

(
α1 ε
ε̄ α2

) (
φ
ψ

)

Superunitary (more precisely, in this example, 
orthosymplectic) group is the symmetry group of this 

action
Strange reducible but indecomposable representations 

of the superunitary group
φ̄φ− ψ̄ψ

φ̄ψ φψ̄
φ̄φ + ψ̄ψ

ε

ε

ε̄

ε̄
scalar at the bottom



Logarithms and the indecomposable reps 10

C

D

ζ ζ̄

〈C(z) C(w)〉 = 0 δ 〈ζ(z)C(w)〉 = 0Used to be mysterious, now natural

〈C(z) D(w)〉 =
1

(z − w)2λ

〈
ζ(z)ζ̄(w)

〉
=

1
(z − w)2λ

So ζ are just usual primary fields

δ
〈
D(z)ζ̄(w)

〉
=

〈
ζ(z)ζ̄(w)

〉
− 〈D(z)C(w)〉 = 0

〈D(z) D(w)〉 = −2 ln(z − w)
(z − w)2λ

Finally:

because why not??

Logarithmic operators love 
indecomposable multiplets

Z. Masarani, D. Serban, 1996



Stress-energy tensor at c=0: CFT perspective 11

Any primary operator with a 
nonvanishing norm in a CFT satisfies

Thus the direct limit c→0 is problematic. 

Any c=0 CFT must contain operators with 
dimension 2 distinct from the stress-energy tensor. 

At least one of them, called t, must satisfy

Then
VG, 1999



Stress-energy tensor at c=0: supersymmetry 
perspective

12

Stress-energy tensor is always a 
part of a reducible but 

indecomposable multiplet

Possible consistent OPE:
But these are also possible 

consistent OPE:

Realized in supergroup-based WZW 
models.

Makes t logarithmic. Realized in c=0 minimal model.

T (z)t(0) =
b

z4
+

2t(0) + T (0)
z2

+ . . .



Nonlogarithmic t: free field theory 13

Bosons Fermions

Stress-tensor multiplet

b in this case is the central charge of the 
bosonic part of the theory



Nonlogarithmic t: Kac-Moody algebras 14

U(1|1) Kac-Moody algebra with the generators J, j, η, η̄

sort of like U(2), but with different:

[j, η] = −η

[j, η̄] = η̄

{η, η̄} = J

J commutes with 
everybody

b = k

C. Chamon, C. Mudry, X.-G. 
Wen, 1996

T =
k

2
(Jj + ηη̄ − η̄η) + k2 4− kj

8
JJ

ξ =
k

4
(ηj + jη) + k

4− kj

8
ηJ

t =
k

4
jj + k2 4− kj

16
(Jj + η̄ − ηη̄)

VG, 1999



Logarithmic t: supersymmetry emerges 15

These follow from the assumption of logarithmic t by 
conformal invariance only

Yet they automatically form the 
indecomposable representation 

shown on the left



Example of a derivation 16

Don’t know α at the moment. 

This is a rational function:

Reconstruct it by its singularities!

Only works if α=1/4.

Let’s compute it



Extended algebra? 17

In the same way how Virasoro algebra can be derived 
from the OPEs (as well as extended W-algebras), can an 
extended algebra of dimension 2 operators follow from 

the logarithmic OPEs?

The answer to this question is not known. But there exist 
partial examples which show that this may work. 



Attempts to construct extended algebra 18

Conformal invariance predicts:

We recognize that this must be true:



Logarithmic algebra 19

Logarithms in the OPE of t and A (A - arbitrary primary 
operator with nonzero dimension) can be removed:

Logarithms are 
captured by this term

Logarithmic commutation relations
Generalization of these to other components of the stress tensor multiplet were not yet found.



Logarithmic t: minimal model at c=0 20

CFT at c = 0 and Two-Dimensional Critical Systems 9
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FIG. 1: Some of the first few operators of the Kač table at c = 0

B. Logarithmic partner t(z) of the stress tensor T (z)

A special set of primary operators, the so-called Kač-degenerate operators, have conformal weights which lie on a
two-dimensional grid, usually referred to as the Kač table. It is well known that in conventional CFTs chiral (=holo-
morphic) correlation functions involving at least one such ‘Kač-degenerate’ operator satisfy [57] certain differential
equations [1]. Solving such differential equations for the (chiral) four-point functions (conformal blocks), provides a
way to find the OPEs of primary operators. For further reference we provide in Fig. 1 a list of the first few operators
of the Kač table at c = 0.

Moreover, it is well known[1] that, due to global conformal invariance, the (chiral) four-point function of a primary
operator [58] can be expressed in terms of a single function F (x),

〈A(z1)A(z2)A(z3)A(z4) 〉 =
1

(z1 − z2)2h(z3 − z4)2h
F (x) , (26)

where x denotes a cross-ratio

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (27)

Consider the ordinary differential equation for the function F (x), associated with an operator A belonging to the
Kač table.

In conventional CFTs (which have c $= 0), there is one solution of that equation which is of the form

F (x) = 1 + α0 x2 + ... , (28)

(with some constant α0) corresponding to the OPE (17). The function F (x) with this expansion is usually referred
to as the identity conformal block of the chiral four-point function given in (26).

The situation at c = 0 is far more complex, however. By investigating the corresponding differential equation, it
can be directly verified that for all the operators from the first two rows or from the first column of the Kač table
in Fig. 1 (except for those with vanishing conformal weight, discussed separately below), the small-x behavior of the
identity conformal block is

F (x) = 1 + α x2 log(x) + ... (29)

in contrast to (28). It turns out that the other operators of the Kač table, which lie deeper in its interior (i.e. beyond
the first two rows or the first column), have even more complicated identity conformal blocks [31]. We will not consider
them in this paper, however.

The appearance of logarithms in a correlation function at a critical point, as on the right-hand side of (29), is
characteristic of theories with so-called logarithmic operators [32]. In this particular case, the relevant logarithmic
operator has conformal weight two, the same weight as that of the stress tensor T (z). Based on these considerations

Differential equations give



Algebraic approach to compute b 21

Null vector

CFT at c = 0 and Two-Dimensional Critical Systems 9
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FIG. 1: Some of the first few operators of the Kač table at c = 0

B. Logarithmic partner t(z) of the stress tensor T (z)

A special set of primary operators, the so-called Kač-degenerate operators, have conformal weights which lie on a
two-dimensional grid, usually referred to as the Kač table. It is well known that in conventional CFTs chiral (=holo-
morphic) correlation functions involving at least one such ‘Kač-degenerate’ operator satisfy [57] certain differential
equations [1]. Solving such differential equations for the (chiral) four-point functions (conformal blocks), provides a
way to find the OPEs of primary operators. For further reference we provide in Fig. 1 a list of the first few operators
of the Kač table at c = 0.

Moreover, it is well known[1] that, due to global conformal invariance, the (chiral) four-point function of a primary
operator [58] can be expressed in terms of a single function F (x),

〈A(z1)A(z2)A(z3)A(z4) 〉 =
1

(z1 − z2)2h(z3 − z4)2h
F (x) , (26)

where x denotes a cross-ratio

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (27)

Consider the ordinary differential equation for the function F (x), associated with an operator A belonging to the
Kač table.

In conventional CFTs (which have c $= 0), there is one solution of that equation which is of the form

F (x) = 1 + α0 x2 + ... , (28)

(with some constant α0) corresponding to the OPE (17). The function F (x) with this expansion is usually referred
to as the identity conformal block of the chiral four-point function given in (26).

The situation at c = 0 is far more complex, however. By investigating the corresponding differential equation, it
can be directly verified that for all the operators from the first two rows or from the first column of the Kač table
in Fig. 1 (except for those with vanishing conformal weight, discussed separately below), the small-x behavior of the
identity conformal block is

F (x) = 1 + α x2 log(x) + ... (29)

in contrast to (28). It turns out that the other operators of the Kač table, which lie deeper in its interior (i.e. beyond
the first two rows or the first column), have even more complicated identity conformal blocks [31]. We will not consider
them in this paper, however.

The appearance of logarithms in a correlation function at a critical point, as on the right-hand side of (29), is
characteristic of theories with so-called logarithmic operators [32]. In this particular case, the relevant logarithmic
operator has conformal weight two, the same weight as that of the stress tensor T (z). Based on these considerations

Monwhea Jeng: correct 
up to at least the 

degeneracy level 15

Satisfies appropriate equations at the appropriate values of b



Operators with vanishing dimension 22

An operator of dimension 0 at c=0 which is primary and 
not identity plays a special role in Cardy’s theory of 

percolation...



Difficulties if one tries to go further 23

• Commutation relations depend on what the operators 
act on (but isn’t it similar to the parafermions)?

• What if the operators that the stress-tensor multiplet acts 
on are themselves parts of multiplets?

• Substracting logarithms may or may not be possible in 
all the cases.

• What if gluing left and right sector is not a trivial task?



Cardy’s explanation of the logarithms 24

At each n, 
these are 

“reasonable” 
conformal 

fields

Logarithms at disordered critical points are inevitable!



Conclusions 25

Logarithmic operators at critical points with quenched 
disorder are inevitable, control the structure of the CFT, 

and are not understood. The need to be understood if we 
are to develop a general theory of such critical points.



The end
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