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Logarithmic Minimal Models LM(p, p′)

• Face Operators Defined in Planar Temperley-Lieb Algebra (Jones 1999)

X(u) = u =
sin(λ − u)

sinλ
+

sinu

sinλ
; Xj(u) =

sin(λ − u)

sinλ
I +

sinu

sinλ
ej

1 ≤ p < p′ coprime integers, λ =
(p′ − p)π

p′
= crossing parameter

u = spectral parameter, β = 2cosλ = fugacity of loops

Planar Algebra

(Temperley-Lieb Algebra)

YBE

Nonlocal Statistical Mechanics

(Yang-Baxter Integrable Link Models)

continuum
limit

lattice
realization

Logarithmic CFTs

(Logarithmic Minimal Models)
Nonlocal Degrees of Freedom
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Polymers and Percolation on the Lattice

• Critical Dense Polymers: (p, p′) = (1,2), λ =
π

2

dSLE
path = 2 − 2∆p,p′−1 = 2, κ =

4p′

p
= 8

∆1,1 = 0 lies outside rational M(1,2) Kac table

β = 0 ⇒ no loops ⇒ space-filling dense polymer

• Critical Percolation: (p, p′) = (2,3), λ =
π

3
, u =

λ

2
=

π

6
(isotropic)

dSLE
path = 2 − 2∆p,p′−1 =

7

4
, κ =

4p′

p
= 6

∆2,2 = 1
8 lies outside rational M(2,3) Kac table

Bond percolation on the blue square lattice:

Critical probability = pc = sin(λ − u) = sinu = 1
2

β = 1 ⇒ local stochastic process
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Yang-Baxter Equations and Boundary Conditions

• Yang-Baxter Equations

u

v
u − v =

v

u
u − v

u−v

λ−u−v

u

v u−v

λ−u−v

v

u

=

• Equality is the equality of N-tangles.

• (r, s) Solution r, s ∈ N, ρ is related to r, and ξk is linear in λ.

=

=(r,s) (r,1) ⊗

u−ξρ−1 u−ξρ−2 u−ξ1

−u−ξρ−2−u−ξρ−3 −u−ξ0

u

(1,s) (1,1)⊗

. .

. .

︸ ︷︷ ︸

ρ − 1 columns
︸ ︷︷ ︸

s − 1 columns

• Left boundary conditions are constructed similarly.
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Double-Row Transfer Matrix

• For a strip with N columns, the double-row transfer “matrix” is the N-tangle

D(u) =

u u u

λ−u λ−u λ−u

u

. .

. .

. .

. .

• Using the Yang-Baxter and Boundary Yang-Baxter Equations in the planar Temperley-Lieb

algebra, it can be shown that, for any (r, s), the double-row transfer tangles commute and

are crossing symmetric

D(u)D(v) = D(v)D(u), D(u) = D(λ − u)

• Multiplication is vertical concatenation of diagrams.

• Act on vector spaces of states to obtain matrix realizations and spectra.
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Planar Link Diagrams
• The planar N-tangles act on a vector space VN of planar link diagrams. The dimension

of VN is given by Catalan numbers. For N = 6, there is a basis of 5 link diagrams:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

• The first link diagram is the reference state. Other states are generated by the action of

the TL generators by concatenation from below

1 2 3 4 5 6

=
1 2 3 4 5 6 1 2 3 4 5 6

= β
1 2 3 4 5 6

etc.

• The action of the TL generators on the states is non-local. It leads to matrices with

entries 0,1, β that represent the TL generators. For N = 6, the action of e1 and e2 on V6 is

e1 =








β 0 1 0 1
0 β 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0








, e2 =








0 0 0 0 0
0 0 0 0 0
1 0 β 0 0
0 1 0 β 1
0 0 0 0 0








, etc.

• Example

initial state:

resulting state: β2
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Defects

• More generally, the vector space of states V(ℓ)
N can contain ℓ defects

N = 4, ℓ = 2 :
1 2 3 4 1 2 3 4 1 2 3 4

• The ℓ defects can be closed on the right or the left. In this way, the number of defects

propagating in the bulk is controlled by the boundary conditions. In particular, for (1, s)

boundary conditions, the ℓ = s − 1 defects simply propagate along a boundary

• Defects in the bulk can be annihilated in pairs but not created under the action of TL

1 2 3 4 5 6
=

1 2 3 4 5 6
etc.

• The transfer matrices are thus block-triangular with respect to the number of defects.

0-7



Conformal Field Theory and Kac Representations

• With only one non-trivial (r, s)-type boundary condition, the double-row transfer matrix is

found to be diagonalizable.

• In the continuum scaling limit, each logarithmic minimal model gives rise to a CFT

D(u) ∼ e−uH, −H → L0 − c

24
, Zr,s(q) = TrD(u)P → q−c/24 Tr qL0 = χr,s(q)

where q is the modular parameter.

• Associated to the boundary condition (r, s) is the so-called Kac representation (r, s).

• As representations of the Virasoro algebra, the Kac representations fall in three groups:

(i) irreducible representations,

(ii) reducible yet indecomposable representations,

(iii) fully reducible representations.

• Two irreducible representations with the same conformal weight are identified: (kp, p′) ≡
(p, kp′), k ∈ N.

• There are infinitely many distinct Kac representations.

• This infinite set of representations is associated to an infinitely extended Kac table.

• The Kac representations are the building blocks for fusion.

• The identity representation is (1,1). It is







irreducible, p = 1

reducible yet indecomposable, p ≥ 2
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Critical Dense Polymer Kac Table

• Central Charge: (p, p′) = (1,2)

c = 1 − 6(p − p′)2

pp′
= −2

• Conformal Weights:

∆r,s =
(p′r − ps)2 − (p − p′)2

4pp′

=
(2r − s)2 − 1

8
, r, s ∈ N

• Kac Representation Characters:

χr,s(q) = q−c/24 q∆r,s(1 − qrs)
∏∞

n=1(1 − qn)

• Irreducible Representations:

There is an irreducible representation for

each distinct conformal weight. The Kac

representations which happen to be irre-

ducible are marked with a red quadrant.

... ... ... ... ... ... . . .

63
8

35
8

15
8

3
8

−1
8

3
8

· · ·

6 3 1 0 0 1 · · ·

35
8

15
8

3
8

−1
8

3
8

15
8

· · ·

3 1 0 0 1 3 · · ·

15
8

3
8

−1
8

3
8

15
8

35
8

· · ·

1 0 0 1 3 6 · · ·

3
8

−1
8

3
8

15
8

35
8

63
8

· · ·

0 0 1 3 6 10 · · ·

−1
8

3
8

15
8

35
8

63
8

99
8

· · ·

0 1 3 6 10 15 · · ·

1 2 3 4 5 6 r

1

2

3

4

5

6

7

8

9

10

s
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Critical Percolation Kac Table

• Central Charge: (p, p′) = (2,3)

c = 1 − 6(p − p′)2

pp′
= 0

• Conformal Weights:

∆r,s =
(p′r − ps)2 − (p − p′)2

4pp′

=
(3r − 2s)2 − 1

24
, r, s ∈ N

• Kac Representation Characters:

χr,s(q) = q−c/24 q∆r,s(1 − qrs)
∏∞

n=1(1 − qn)

• Irreducible Representations:

There is an irreducible representation for

each distinct conformal weight. The Kac

representations which happen to be irre-

ducible are marked with a red quadrant.

... ... ... ... ... ... . . .

12
65
8 5

21
8 1

1
8

· · ·

28
3

143
24

10
3

35
24

1
3

− 1
24

· · ·

7
33
8 2

5
8 0

1
8

· · ·

5
21
8 1

1
8 0

5
8

· · ·

10
3

35
24

1
3

− 1
24

1
3

35
24

· · ·

2
5
8 0

1
8 1

21
8

· · ·

1
1
8 0

5
8 2

33
8

· · ·

1
3

− 1
24

1
3

35
24

10
3

143
24

· · ·

0
1
8 1

21
8 5

65
8

· · ·

0
5
8 2

33
8 7

85
8

· · ·

1 2 3 4 5 6 r

1

2

3

4

5

6

7

8

9

10

s
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Lattice Implementation of Fusion

• Fusion is implemented on the lattice by taking non-trivial boundary conditions on the left

and right (r′, s′) ⊗ (r, s)

D(u) = u

u u u

λ−u λ−u λ−u

u

• In general, these fusion transfer matrices are non-diagonalizable as they can exhibit non-

trivial Jordan blocks.

• In terms of representations, such examples correspond to reducible representations R of

rank greater than 1 ⇒ Logarithmic CFT. There are infinitely many of these reps; all of

rank 2 or 3 and all associated to the infinitely extended Kac table.
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An Indecomposable Representation of Rank 2

• For LM(1,2), the fusion “(1,2) ⊗ (1,2) =
(

− 1
8

)

⊗
(

− 1
8

)

= 0 + 0 = (1,1) + (1,3)” yields

a reducible yet indecomposable representation of rank 2.

• For N = 4, the Hamiltonian

D(u) ∼ e−uH −H =
∑

j

ej ∼








0 1 0 0 0
2 0 1 0 1
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0








+
√

2 I −H 7→ L0 − c
24

acts on the five states with ℓ = 0 or ℓ = 2 defects

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

• The Jordan canonical form of H has rank-2 Jordan blocks

−H ∼









0 0 1 0 0

0
√

8 0 0 1
0 0 0 0 0

0 0 0
√

2 0

0 0 0 0
√

8









∼









0 1 0 0 0
0 0 0 0 0

0 0
√

2 0 0

0 0 0
√

8 1

0 0 0 0
√

8









∼








0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2








= L
(4)
0

• As N → ∞, the eigenvalues of −H approach the integer energies indicated in L
(4)
0 .

• For N = 4, the finitized partition function is (q = modular parameter)

Z
(N)
(1,2)|(1,2)

(q) = χ
(N)
(1,1)

(q)
︸ ︷︷ ︸

0 defects

+ χ
(N)
(1,3)

(q)
︸ ︷︷ ︸

2 defects

= q−c/24[(1+q2) + (1+q+q2)] = q−c/24(2+q+2q2)
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Dense Polymer Virasoro Fusion Algebra

• The fundamental Virasoro fusion algebra of critical dense polymers LM(1,2) is

〈

(2,1), (1,2)
〉

=
〈

(r,1), (1,2k),Rk; r, k ∈ N

〉

• With the identifications (k,2k′) ≡ (k′,2k), the fusion rules obtained empirically from the

lattice are commutative, associative and agree with Gaberdiel & Kausch (1996)

(r,1) ⊗ (r′,1) =
r+r′−1

⊕

j=|r−r′|+1, by 2

(j,1)

(1,2k) ⊗ (1,2k′) =
k+k′−1

⊕

j=|k−k′|+1, by 2

Rj

(1,2k) ⊗Rk′ =
k+k′
⊕

j=|k−k′|
δ
(2)
j,{k,k′}(1,2j)

Rk ⊗Rk′ =
k+k′
⊕

j=|k−k′|
δ
(2)
j,{k,k′}Rj

(r,1) ⊗ (1,2k) =
r+k−1

⊕

j=|r−k|+1, by 2

(1,2j) = (r,2k)

(r,1) ⊗Rk =
r+k−1

⊕

j=|r−k|+1, by 2

Rj

...
...

...
...

...
... . . .

63
8

35
8

15
8

3
8

−1
8

3
8

· · ·

6 3 1 0 0 1 · · ·
35
8

15
8

3
8

−1
8

3
8

15
8

· · ·

3 1 0 0 1 3 · · ·
15
8

3
8

−1
8

3
8

15
8

35
8

· · ·

1 0 0 1 3 6 · · ·
3
8

−1
8

3
8

15
8

35
8

63
8

· · ·

0 0 1 3 6 10 · · ·

−1
8

3
8

15
8

35
8

63
8

99
8

· · ·

0 1 3 6 10 15 · · ·

1 2 3 4 5 6 r

1

2

3

4

5

6

7

8

9

10

s

Rk = (1,2k−1) ⊕i (1,2k+1),

(
indecomposable

of rank 2

)

δ
(2)
j,{k,k′} = 2 − δj,|k−k′| − δj,k+k′
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W-Extended Vacuum of WLM(1,2)

• Critical dense polymers LM(1,2) in the W-extended picture is identified with the so-called

symplectic fermions.

• The W-extended vacuum character of symplectic fermions is known to be

χ̂1,1(q) =
∞∑

n=1

(2n − 1)χ2n−1,1(q)

• The BYBE is not linear and sums of solutions do not usually give new solutions. Rather,

the BYBE is closed under fusions. We thus consider the triple fusion

(2n−1,1) ⊗ (2n−1,1) ⊗ (2n−1,1) = (1,1) ⊕ 3(3,1) ⊕ 5(5,1) ⊕ . . . ⊕ (2n−1)(2n−1,1) ⊕ . . .

For large n, the coefficients stabilize and reproduce the extended vacuum character χ̂1,1(q).

• The W-Extended Vacuum is thus defined by

(1,1)W := lim
n→∞(2n − 1,1) ⊗ (2n − 1,1) ⊗ (2n − 1,1) =

∞⊕

n=1

(2n − 1) (2n − 1,1)

• In general, we denote by WLM(p, p′) the logarithmic minimal model LM(p, p) viewed in

the W-extended picture.
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W-Extended Boundary Conditions and Fusion

• The W-extended vacuum (1,1)W of WLM(1,2) must act as the identity. In particular

(1,1)W ⊗̂ (1,1)W = (1,1)W

where ⊗̂ denotes the fusion multiplication in the extended picture.

• The W-extended vacuum has the stability property

(2n − 1,1) ⊗ (1,1)W = (2n − 1) (1,1)W

• The W-extended fusion ⊗̂ is therefore defined by

(1,1)W ⊗̂ (1,1)W := lim
n→∞

(
1

(2n−1)3
(2n−1,1) ⊗ (2n−1,1) ⊗ (2n−1,1) ⊗ (1,1)W

)

= (1,1)W

• Additional stability properties enable us to define

(1, s)W := (1, s) ⊗ (1,1)W =
∞⊕

n=1

(2n − 1) (2n − 1, s), s = 1,2

(2, s)W := 1
2(2, s) ⊗ (1,1)W =

∞⊕

n=1

2n (2n, s), s = 1,2

R̂1 ≡ (R1)W := R1 ⊗ (1,1)W =
∞⊕

n=1

(2n − 1)R2n−1

R̂0 ≡ (R2)W := 1
2R2 ⊗ (1,1)W =

∞⊕

n=1

2nR2n

• The ensuing representation content: 4 W-irreducible representations and 2 W-reducible

yet W-indecomposable representations of rank 2.
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Fusion Rules for WLM(1,2)

• The W-extended fusion rules follow from the Virasoro fusion rules combined with stability

⊗̂ 0 1 −1
8

3
8 R̂0 R̂1

0 0 1 −1
8

3
8 R̂0 R̂1

1 1 0
3
8 −1

8 R̂1 R̂0

− 1
8 −1

8
3
8 R̂0 R̂1 2(−1

8) + 2(3
8) 2(−1

8) + 2(3
8)

3
8

3
8 −1

8 R̂1 R̂0 2(−1
8) + 2(3

8) 2(−1
8) + 2(3

8)

R̂0 R̂0 R̂1 2(−1
8) + 2(3

8) 2(−1
8) + 2(3

8) 2R̂0 + 2R̂1 2R̂0 + 2R̂1

R̂1 R̂1 R̂0 2(−1
8) + 2(3

8) 2(−1
8) + 2(3

8) 2R̂0 + 2R̂1 2R̂0 + 2R̂1

where the 4 W-irreducible representations are represented by their conformal weights.

Example: Consider the W-extended fusion rule 1 ⊗̂1 = 0:

(2,1)W ⊗̂ (2,1)W =
(
1
2(2,1) ⊗ (1,1)W

)

⊗̂
(
1
2(2,1) ⊗ (1,1)W

)

= 1
4

(

(2,1) ⊗ (2,1)
)

⊗
(

(1,1)W ⊗̂ (1,1)W
)

= 1
4

(

(1,1) ⊕ (3,1)
)

⊗ (1,1)W

= 1
4(1 + 3)(1,1)W

= (1,1)W
• For general WLM(1, p′), the W-extended fusion rules and characters agree with Gaberdiel

& Kausch (1996) and Gaberdiel & Runkel (2008).
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Representation Content of WLM(p, p′)

Number Symplectic Fermions Critical Percolation

W-indec reps 6pp′ − 2p − 2p′ 6 26

Rank 1 2p + 2p′ − 2 4 8

Rank 2 4pp′ − 2p − 2p′ 2 14

Rank 3 2(p − 1)(p′ − 1) 0 4

W-irred chars 2pp′ + 1
2(p − 1)(p′ − 1) 4 13

W-proj reps 2pp′ 4 12

W-proj chars 1
2(p + 1)(p′ + 1) 3 6

• The finitely many W-indecomposable reps close under fusion with respect to ⊗̂.

• For p ≥ 2, this fusion algebra has no identity. A canonical algebraic extension exists.

• A “disentangling procedure” is employed when identifying the various representations.

• The W-projective representations form a fusion sub-algebra. Here, a W-projective rep-

resentation is a “maximal” W-indecomposable representation in the sense that it does not

appear as a subfactor of any other W-indecomposable representation.
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Virasoro Decompositions

• In terms of Virasoro-indecomposable representations, the W-indecomposable representa-

tions decompose into infinite direct sums.

rank-1: (κ ∈ Z1,2, r ∈ Z1,p, s ∈ Z1,p′)

(κp, s)W =
⊕

k∈N

(2k − 2 + κ)((2k − 2 + κ)p, s)

(r, κp′)W =
⊕

k∈N

(2k − 2 + κ)(r, (2k − 2 + κ)p′)

where the two expressions for (p, p′)W agree while (p,2p′)W ≡ (2p, p′)W.

rank-2: (κ ∈ Z1,2, a ∈ Z1,p−1, b ∈ Z1,p′−1, r ∈ Z1,p, s ∈ Z1,p′)

(Ra,0
κp,s)W =

⊕

k∈N

(2k − 2 + κ)Ra,0
(2k−2+κ)p,s

, (R0,b
r,κp′)W =

⊕

k∈N

(2k − 2 + κ)R0,b
r,(2k−2+κ)p′

rank-3: (κ ∈ Z1,2, a ∈ Z1,p−1, b ∈ Z1,p′−1)

(Ra,b
κp,p′)W =

⊕

k∈N

(2k − 2 + κ)Ra,b
p,(2k−2+κ)p′ =

⊕

k∈N

(2k − 2 + κ)Ra,b
(2k−2+κ)p,p′

• The embedding diagrams are partially understood.

• The set of W-projective representations is

{

(Rα,β
κp,p′)W;κ ∈ Z1,2, α ∈ Z0,p−1, β ∈ Z0,p′−1

}

, (R0,0
κp,p′)W ≡ (κp, p′)W
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W-Irreducible Characters of Critical Percolation
• W-irreducible representations:

χ̂1
3
(q) =

1

η(q)

∑

k∈Z

(2k − 1)q3(4k−3)2/8

χ̂10
3
(q) =

1

η(q)

∑

k∈Z

2k q3(4k−1)2/8

χ̂1
8
(q) =

1

η(q)

∑

k∈Z

(2k − 1) q(6k−5)2/6

χ̂5
8
(q) =

1

η(q)

∑

k∈Z

(2k − 1) q(6k−4)2/6

χ̂21
8
(q) =

1

η(q)

∑

k∈Z

2k q(6k−2)2/6

χ̂33
8
(q) =

1

η(q)

∑

k∈Z

2k q(6k−1)2/6

χ̂− 1
24

(q) =
1

η(q)

∑

k∈Z

(2k − 1) q(6k−6)2/6

χ̂35
24

(q) =
1

η(q)

∑

k∈Z

2k q(6k−3)2/6

• Subfactors of W-reducible yet W-indecomposable representations:

χ̂0(q) = 1

χ̂1(q) =
1

η(q)

∑

k∈Z

k2
[

q(12k−7)2/24 − q(12k+1)2/24
]

χ̂2(q) =
1

η(q)

∑

k∈Z

k2
[

q(12k−5)2/24 − q(12k−1)2/24
]

η(q) = q
1
24

∞∏

n=1

(1 − qn)

χ̂5(q) =
1

η(q)

∑

k∈Z

k(k + 1)

[

q(12k−1)2/24 − q(12k+7)2/24
]

χ̂7(q) =
1

η(q)

∑

k∈Z

k(k + 1)

[

q(12k+1)2/24 − q(12k+5)2/24
]

• For general WLM(p, p′), the W-characters agree with Feigin, Gainutdinov, Semikhatov

& Tipunin (2006).
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Polynomial Fusion Ring of WLM(p, p′)

• Notation: κ ∈ Z1,2, a ∈ Z1,p−1, b ∈ Z1,p′−1, α ∈ Z0,p−1, β ∈ Z0,p′−1

• Rank-1 representations: {(R0,0
a,κp′)W , (R0,0

κp,b)W , (R0,0
κp,p′)W} ♯ = 2p + 2p′ − 2

Rank-2 representations: {(Ra,0
κp,b)W , (Ra,0

κp,p′)W , (R0,b
a,κp′)W , (R0,b

κp,p′)W} ♯ = 4pp′ − 2p − 2p′

Rank-3 representations: {(Ra,b
κp,p′)W} ♯ = 2(p − 1)(p′ − 1)

• Polynomials:

Pn(x) = U3n−1

(
x
2

)

− 3Un−1

(
x
2

)

= 2

(

T2n

(
x
2

)

− 1

)

Un−1

(
x
2

)

= (x2 − 4)U3
n−1

(
x
2

)

Pn,n′(x, y) =

(

Tn

(
x
2

)

− Tn′
(

y
2

))

Un−1

(
x
2

)

Un′−1

(
y
2

)

where Tn and Un are Chebyshev polynomials of the first and second kind, respectively.

• The polynomials

pol
(Rα,0

κp,b)W
(X, Y ) =

2−δα,0
κ Tα

(
X
2

)

Uκp−1

(
X
2

)

Ub−1

(
Y
2

)

pol
(R0,β

a,κp′)W
(X, Y ) = Ua−1

(
X
2

)2−δβ,0
κ Tβ

(
Y
2

)

Uκp′−1

(
Y
2

)

pol
(Rα,β

κp,p′)W
(X, Y ) =

2−δα,0
κ Tα

(
X
2

)

Uκp−1

(
X
2

)(

2 − δβ,0

)

Tβ

(
Y
2

)

Up′−1

(
Y
2

)

generate an ideal of the quotient polynomial ring

C[X, Y ]
/(

Pp(X), Pp′(Y ), Pp,p′(X, Y )
)

• The W-extended fusion algebra of WLM(p, p′) is isomorphic to this ideal.
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Summary and Outlook

• Infinite series of Yang-Baxter integrable lattice models of non-local statistical mechanics.

• Logarithmic CFT with infinitely many (higher-rank) indecomposable representations.

• Empirical Virasoro fusion rules for LM(p, p′)

Checks:







1. LM(p, p′) fusion rules agree with level-by-level fusion rules of

Eberle & Flohr (2006) using the Nahm-Gaberdiel-Kausch algorithm (1994-96).

2. Vertical fusion subalgebras agree with Read & Saleur (2007) and

Mathieu & Ridout (2008).

3. Associativity.

• W-extended picture with finitely many (higher-rank) indecomposable representations.

• Inferred W-algebra fusion rules for WLM(p, p′)

Checks:







1. WLM(1, p′) fusion rules agree with Gaberdiel & Kausch (1996) and

Gaberdiel & Runkel (2008).

2. WLM(p, p′) characters agree with Feigin et al (2006).

3. Associativity.

• Links to SLE.

• Verlinde formulas from spectral decompositions:







Projective representations (with Pearce).

Grothendieck ring (with Pearce & Ruelle).

Fusion algebra.

• From strip to cylinder (with Pearce & Villani) and torus → modular invariance.

• Open boundary conditions (with Pearce & Tipunin) → half-integer Kac labels.
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