

University of London

Fusion rules and boundary conditions in logarithmic CFT

Ingo Runkel (King's College London)

joint work with

Matthias Gaberdiel (ETH Zürich) Simon Wood (ETH Zürich)

0707.0388,0905.0916 [hep-th]

<u>Outline</u>

- From boundary to bulk in non-logarithmic rational CFT
- The W_{2,3} model with c=0
- A boundary theory for the $W_{2,3}$ model
- (A few words on the bulk theory)

Boundary CFT - the Cardy case (non-log., rational) e.g. Virasoro minimal models V(p,q) Cardy '89 irreducible representations h_{r,s} elementary boundary conditions Kac label (r,s) Cylinder partition function $U_a \otimes U_b \cong \bigoplus N_{ab}^{\ c} \ U_c$

Rewrite: $A_{U,V}(q) = \chi_{V \otimes U^*}(q)$

Boundary is simpler than bulk

(non-log., rational)

Bulk partition function :

$$Z(q) = \sum_{i} |\chi_i(q)|^2$$

Cylinder partition function for a=b=(1,1): $A_{a,a}(q) = \chi_{(1,1)}(q)$

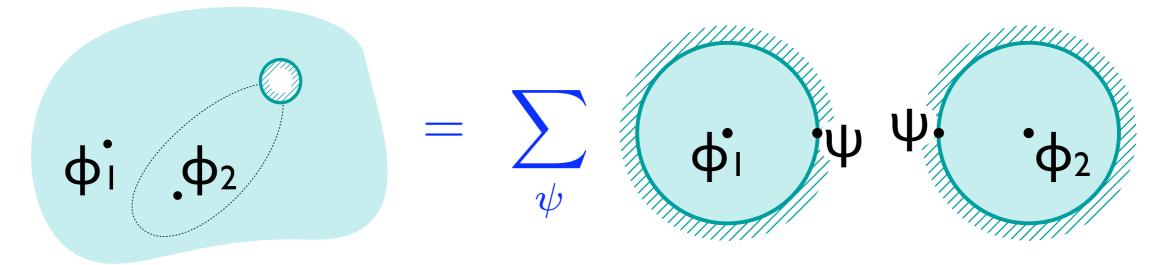
The space of states on the (I,I)-boundary is the irreducible Virasoro vacuum representation (h=0)

From boundary to bulk

Fuchs, Schweigert, IR '02 Gaberdiel, IR '07

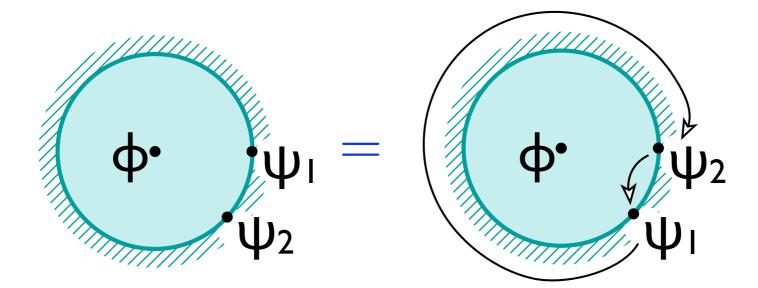
I) Disc correlator of one bulk and one boundary field <u>non-degenerate</u>:

Want this, because:



... from boundary to bulk

2) Disc correlator <u>symmetric</u>:



... from boundary to bulk

3) Take biggest \mathcal{H}_{bulk} satisfying 1) and 2)

(non-log., rational)

e.g. boundary condition labelled by vacuum rep. (1,1)

- space of boundary fields is the VOA itself $\mathcal{H}_{(1,1)\to(1,1)}=\mathcal{V}$
- ansatz for space of bulk fields $\mathcal{H}_{bulk} = \bigoplus_{i,j} Z_{ij} \ U_i \otimes_{\mathbb{C}} \overline{U}_j^*$ • constrain $Z_{ij} \dots$

 $\begin{array}{l} \dots \text{from boundary to bulk} & (\text{non-log., rational}) \\ \\ \mathcal{H}_{\text{bulk}} = \bigoplus_{i,j} Z_{ij} \ U_i \otimes_{\mathbb{C}} \bar{U}_j^* \\ \\ \bullet \ \mathsf{Z}_{\mathsf{ij}} = \mathsf{0} \ \text{for } \mathsf{i} \neq \mathsf{j}: \end{array}$

If $\phi \in U_i \otimes_{\mathbb{C}} \overline{U}_j^*$ and $\psi \in \mathcal{H}_{(1,1)\to(1,1)} = \mathcal{V}$ then $\langle \phi \psi \rangle = 0$

(3-point conformal block on the sphere vanishes for insertions of U_i , U_j^* and V if $i \neq j$.)

... from boundary to bulk (non-log., rational) $\mathcal{H}_{\text{bulk}} = \bigoplus Z_{ii} \ U_i \otimes_{\mathbb{C}} \bar{U}_i^*$ • $Z_{ii} \leq I$: Suppose $\mathcal{H}_{\text{bulk}} = \cdots \oplus (U_i \otimes_{\mathbb{C}} U_i^*)_1 \oplus (U_i \otimes_{\mathbb{C}} U_i^*)_2 \oplus \cdots$ Take $\phi_1 \in (U_i \otimes_{\mathbb{C}} U_i^*)_1$, $\phi_2 \in (U_i \otimes_{\mathbb{C}} U_i^*)_2$, then $\langle \phi_1 \psi \rangle = \lambda_1 \cdot b(\phi_1, \psi) \quad \langle \phi_2 \psi \rangle = \lambda_2 \cdot b(\phi_2, \psi)$

for the <u>same</u> $b: (U_i \otimes_{\mathbb{C}} \overline{U}_i^*) \times \mathcal{V} \to \mathbb{C}$.

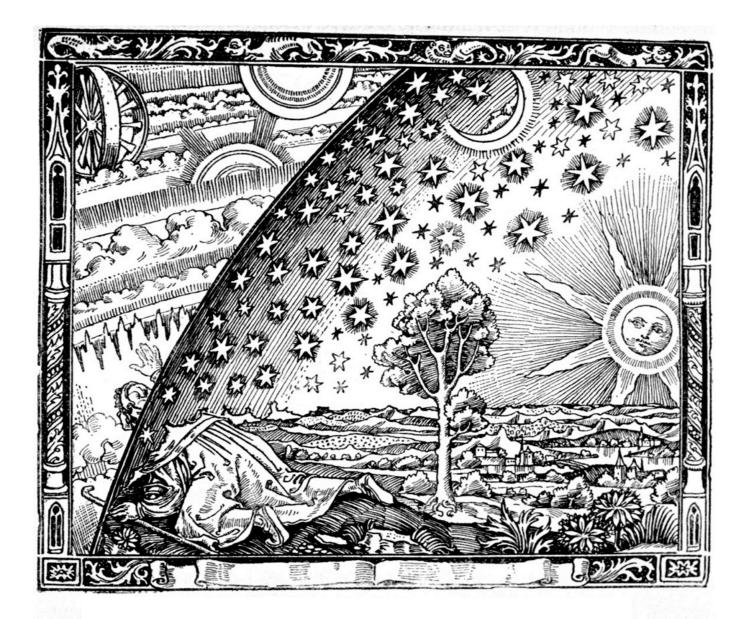
Hence, $\lambda_2\phi_1 - \lambda_1\phi_2$ vanishes in all disc correlators.

(non-log., rational)

- Given a boundary theory (boundary labels, spaces of boundary fields, boundary OPEs) there <u>exists</u> a <u>unique</u> bulk theory that fits to this boundary theory.
- The bulk theory is determined by 1) 3) above.
- Every bulk theory with the same holomorphic and anti-holomorphic rational chiral algebra can be obtained in this way.

Fjelstad, Fuchs, Schweigert, IR '06 Kong, IR '08

Rational logarithmic CFT



Study the $W_{2,3}$ triplet model with central charge c=0. (because the $W_{I,p}$ models are "too simple") • Virasoro Verma module for h=0 and c=0: two independent null vectors $N_1 = L_{-1}\Omega$ $N_2 = (L_{-2} - \frac{3}{2}L_{-1}L_{-1})\Omega$

- Divide by N1 and N2 : get $\mathcal{V}(0) = \mathbb{C} \cdot \Omega$
- Divide by N_1 but <u>not</u> by N_2 : get V with character

 $\chi_{\mathcal{V}}(q) = 1 + q^2 + q^3 + 2q^4 + 2q^5 + 4q^6 + 4q^7 + 7q^8 + 8q^9 + 12q^{10} + 14q^{11} + 21q^{12} + 24q^{13} + 34q^{14} + 41q^{15} + 55q^{16} + \cdots$

(quasi-rational, but not rational)

\dots the W_{23} model

 Extend by three fields with h=15, get W with character

 $\chi_{\mathcal{W}}(q) = 1 + q^2 + q^3 + 2q^4 + 2q^5 + 4q^6 + 4q^7 + 7q^8 + 8q^9 + 12q^{10} + 14q^{11} + 21q^{12} + 24q^{13} + 34q^{14} + 44q^{15} + 58q^{16} + \cdots$

$$\chi_{\mathcal{V}}(q) = 1 + q^2 + q^3 + 2q^4 + 2q^5 + 4q^6 + 4q^7 + 7q^8 + 8q^9 + 12q^{10} + 14q^{11} + 21q^{12} + 24q^{13} + 34q^{14} + 41q^{15} + 55q^{16} + \cdots$$

• W is indecomposable but not irreducible $0 \longrightarrow \mathcal{W}(2) \longrightarrow \mathcal{W} \longrightarrow \mathcal{W}(0) \longrightarrow 0$ irreducible sub-representation irreducible guotient

\dots the W_{23} model

I3 irreducibles:

Feigin, Gainutdinov, Semikhatov, Tipunin '06

- $\mathcal{W}(h)$ with h froms = 1s = 2s = 3r = 10, 2, 70, 1, 5 $\frac{1}{3}, \frac{10}{3}$ (believed to be all)r = 2 $\frac{5}{8}, \frac{33}{8}$ $\frac{1}{8}, \frac{21}{8}$ $-\frac{1}{24}, \frac{35}{24}$
- These are all self-conjugate, but W is not
 → new representation W*

$$0 \longrightarrow \mathcal{W}(2) \longrightarrow \mathcal{W} \longrightarrow \mathcal{W}(0) \longrightarrow 0$$

 $0 \longrightarrow \mathcal{W}(0) \longrightarrow \mathcal{W}^* \longrightarrow \mathcal{W}(2) \longrightarrow 0$

Fusion of W₂₃ representations

• Not known if logarithmic tensor product theory of Huang, Lepowsky, Zhang '07 applies.

- Compute fusion rules
 - start from representations of V
 - compute fusion via Nahm '94, Gaberdiel, Kausch '96
 - → done in Eberle, Flohr '06
 - use induced W-representations and associativity
 - compare subset to Rasmussen, Pearce '08
- I3 irreducibles do not close under fusion, need to add 22 indecomposables to close under fusion + conjugates.

 \dots fusion of W_{23} representations

• Some fusion rules: $\mathcal{W} \otimes \mathcal{R} = \mathcal{R}$

$$\mathcal{W}(0) \otimes \mathcal{W}(h) = \begin{cases} \mathcal{W}(0) & : h = 0\\ 0 & : \text{else} \end{cases}$$
$$\mathcal{W}(2) \otimes \mathcal{W}(2) = \mathcal{W}^*$$

Gaberdiel, Wood, IR '09

• Resolves associativity puzzle in Eberle, Flohr '06

 $\mathcal{W}(0) \otimes \left(\mathcal{W}(2) \otimes \mathcal{W}(2) \right) = \left(\mathcal{W}(0) \otimes \mathcal{W}(2) \right) \otimes \mathcal{W}(2)$ = $\mathcal{W}(0) \otimes \mathcal{W}^* = 0$

and $\mathcal{W}(0)\otimes\mathcal{W}^*\,=\,0$, while $\mathcal{W}(0)\otimes\mathcal{W}\,=\,\mathcal{W}(0).$

Fusion rules and Grothendieck group K₀

Here: K₀ = equivalence classes [U] of representations where [U]=[V] iff $\chi_U(q) = \chi_V(q)$

Product on K_0 via $[U] \cdot [V] = [U \otimes V]$?

No: Have
$$\chi_{\mathcal{W}}(q) = \chi_{\mathcal{W}^*}(q)$$
 but
 $[\mathcal{W}(0)] \cdot [\mathcal{W}] = [\mathcal{W}(0)]$
 $[\mathcal{W}(0)] \cdot [\mathcal{W}^*] = 0$

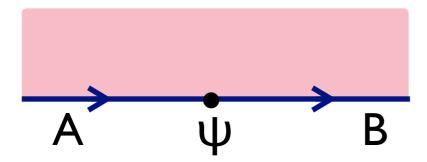
In fact: Tensor product not exact.

Boundary theory for the W_{2,3} model

In non-log., rational CFT (Cardy case):

representations \leftrightarrow boundary conditions

boundary changing fields $A \rightarrow B$: $\mathcal{H}_{A \rightarrow B} = B \otimes A^*$



 $W_{2,3}$ model will be the same but only on <u>subset</u> of reps. (Does not happen for the $W_{1,p}$ models.) \dots boundary theory for the $W_{2,3}$ model

Problems with $\mathcal{H}_{A\to B} = B \otimes A^*$:

- Boundary condition for the irreducible W(0)? $\mathcal{H}_{\mathcal{W}(0) \to \mathcal{W}(h)} = 0$ for $h \neq 0$.
- Boundary condition for the vacuum representation W? $\mathcal{H}_{\mathcal{W}\to\mathcal{W}}=\mathcal{W}^{*}\,\ncong\,\mathcal{W}$
 - no non-degenerate 2-point correlator
 - no embedding of vacuum sector

The rules of the game

Data:

- Labels for boundary conditions $\mathcal{B} = \{A, B, \dots\}$
- spaces of boundary changing fields $\mathcal{H}_{A \rightarrow B}$
- OPE of boundary fields
- boundary one-point correlator on disc $\langle\psi
 angle_A$

Conditions:

- boundary OPE associative
- $\mathcal{H}_{A \to B}$ is non-zero
- $\mathcal W$ is a sub-repn of $\mathcal H_{A \to A}$ containing vacuum Ω
- boundary two-point correlator $\langle \psi_1 \psi_2 \rangle_A$ is non-deg.

The associativity condition

In non-logarithmic, rational CFT: boundary OPE coefficients (left out position dependence)

$$A \qquad B \qquad C \qquad = \sum_{k} C_{ijk}^{ABC} \qquad A \qquad C \qquad C$$

associativity condition

$$C_{jkq}^{BCD} C_{iql}^{ABD} = \sum_{p} C_{ijp}^{ABC} C_{pkl}^{ACD} \cdot \mathsf{F}_{pq}$$

For W_{2,3} model: difficult as conformal 4-point block not known.

Luckily: abstract nonsense construction exists ...

In a tensor category, an internal Hom [A,B] from A to B is a representing object for the functor $Hom(\neg \otimes A, B)$.

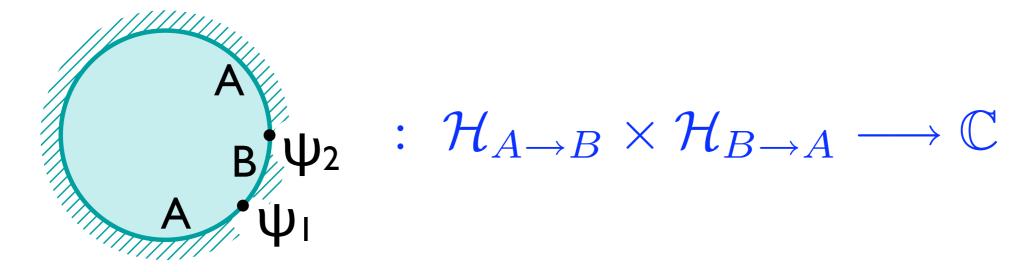
[A,B] is an object such that for all U : Hom($U \otimes A$, B) \cong Hom(U, [A,B])

There is an associative composition $m_{C,B,A} : [B,C] \otimes [A,B] \rightarrow [A,C]$

<u>Conjecture</u>: For the W_{2,3} model, [A,B] = $(A \otimes B^*)^*$ (True if Hom $(U, V^*) \cong Hom(U \otimes V, W^*)$) ... the associativity condition

If we set $\mathcal{H}_{A\to B} = (A \otimes B^*)^*$ then we have an associative boundary OPE for <u>all</u> representations A, B, ...

The non-degeneracy condition



For non-degeneracy need:

 $\mathcal{H}_{A\to B} \cong (\mathcal{H}_{B\to A})^*$ i.e. $(A \otimes B^*)^* \cong B \otimes A^*$

Not true e.g. for A=B=W as $W \otimes W^* = W^*$.

A little more abstract nonsense ...

Interlude: From duals and conjugates

A representation R of W has a (right) dual if there is a representation R^{\vee} and intertwiners

 $d_R : R^{\vee} \otimes R \rightarrow W$ and $b_R : W \rightarrow R \otimes R^{\vee}$

such that ...

<u>Question</u>: Is the conjugate (contragredient) representation R^* a dual of R?

<u>Answer</u>: Not always, e.g. W is its own dual, but $W^* \neq W$. (Does not happen for the $W_{I,p}$ models.) \dots boundary theory for the $W_{2,3}$ model

 \mathcal{B} : collection of all \mathcal{W} representations R for which

- the conjugate \mathbf{R}^* is a dual of \mathbf{R}
- $b_R : \mathcal{W} \to R \otimes R^*$ is injective

For $A, B \in \mathcal{B}$ have $\mathcal{H}_{A \to B} = (A \otimes B^*)^* \cong B \otimes A^*$ and one shows:

- boundary OPE associative
- $\mathcal{H}_{A \rightarrow B}$ is non-zero
- \mathcal{W} is a sub-repn of $\mathcal{H}_{A \to A}$ containing vacuum $\mathbf{\Omega}$
- boundary two-point correlator $\langle \psi_1 \psi_2 \rangle_A$ is non-deg.

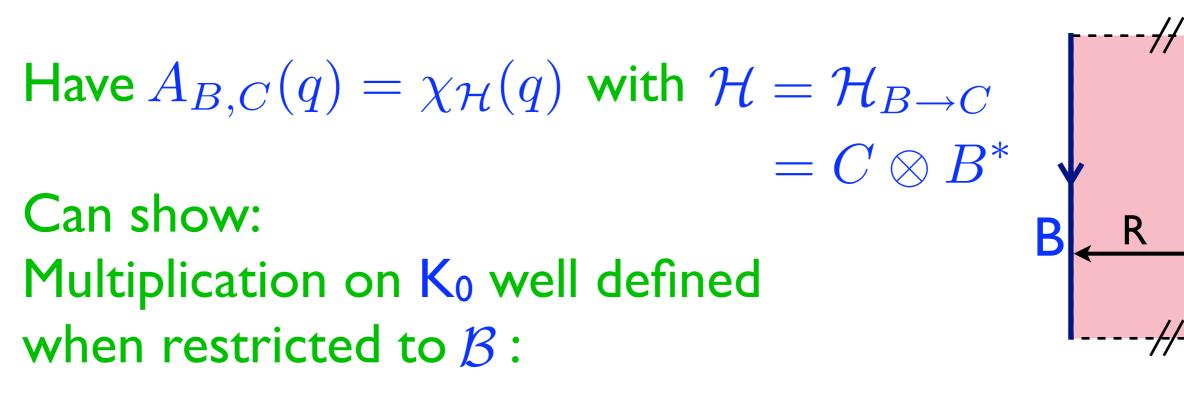
 \dots boundary theory for the $W_{2,3}$ model

• Only 8 of the 13 irreducibles remain:

		s = 1	s = 2	s = 3
$\mathcal{W}(h)$ with h from	r = 1	0, 2, 7	0, 1, 5	$\frac{1}{3}, \ \frac{10}{3}$
	r = 2	$\frac{5}{8}, \frac{33}{8}$	$\frac{1}{8}, \frac{21}{8}$	$-rac{1}{24}, \ rac{35}{24}$

- Only 18 of the 22 indecomposables generated by fusing irreducibles and taking conjugates remain.
- These are the 26 boundary conditions found in the lattice realisation of Rasmussen, Pearce '08
- NO boundary condition with self-spectrum W

Cylinder partition functions



$$[B] \cdot [C^*] = [B \otimes C^*]$$

So $A_{B,C}(q)$ only depends on [B] and [C].

Torus partition function

In non-logarithmic, rational CFT: space of bulk states torus partition function $\mathcal{H}_{\text{bulk}} = \bigoplus_{i} U_i \otimes_{\mathbb{C}} \bar{U}_i^* \qquad Z(q) = \sum_{i} \chi_{U_i}(q) \chi_{U_i^*}(\bar{q})$

Denote by $P_i \rightarrow U_i$ the projective cover of U_i .

Quella, Schomerus '07In the logarithmic $W_{1,p}$ models:Gaberdiel, IR '07space of bulk statestorus partition function $\mathcal{H}_{bulk} = \left(\bigoplus_{i} P_i \otimes_{\mathbb{C}} \bar{P}_i^*\right) / N$ $Z(q) = \sum_{i} \chi_{P_i}(q) \chi_{U_i^*}(\bar{q})$

... torus partition function

In the $W_{2,3}$ model:

Gaberdiel, Wood, IR '09

- $\mathcal{W}(0)$ seems to have no projective cover
- The sum $\sum_{i} \chi_{P_i}(q) \chi_{U_i^*}(\bar{q})$ over the remaining 12 irreducibles is not modular invariant
- Instead

$$Z(q) = \sum_{i} \dim \left(\operatorname{Hom}(P_i, P_i) \right)^{-2} \cdot |\chi_{P_i}(q)|^2$$

is modular invariant.

- proportional to Z in Feigin, Gainutdinov, Semikhatov, Tipunin '06)
- \bullet also correct answer for non-log. Cardy case and $W_{I,p}$ models

<u>Summary</u>

- Idea: build boundary theory first, then obtain bulk from boundary.
- Study $W_{2,3}$ model
- Representation theory: (W reducible ,W≠W^{*}, ⊗ not exact , conjugate R^{*} vs dual R[∨])
- Boundary theory: W-repn ↔ bnd condition ?
 - associative OPE from internal Hom
 - non-deg 2-point correlator guaranteed on subset of reps
 - no boundary condition with self-spectrum W