Deutsches Elektronen-Synchrotron in der Helmholtz-Gemeinschaft

From Symplectic Fermions to Sigma Models on CP^{N-1|N}

ETH, May 2009 Volker Schomerus

based on work w. C. Candu, C.Creutzig, V. Mitev, T Quella, H. Saleur; 2 papers *in preparation*

Superspace Sigma Models

<u>Aim:</u> Study non-linear sigma models with target space supersymmetry not world-sheet

Strings in AdS backgrounds [pure spinor] c = 0 CFTs; symmetry e.g. PSU(2,2|4) ...

Focus on scale invariant QFT, i.e. 2D CFT

<u>Properties:</u> Weird: logarithmic Conformal Field Theories! Remarkable: Many families with cont. varying exponents

Superspace Sigma Models

<u>Aim:</u> Study non-linear sigma models with target space supersymmetry not world-sheet

Strings in AdS backgrounds [pure spinor] c = 0 CFTs; symmetry e.g. PSU(2,2|4) ...

Focus on scale invariant QFT, i.e. 2D CFT

<u>Properties:</u> Remarkable: logarithmic CFTs! ..[VS,Saleur] Weird: Many families w continuously varying exponents

 G/G^{Z_2} OSP(2S+2|2S) S^{2S+1|2S} OSP(2S+1|2S) **OSP(2S+2|2S) OSP(2S+2-n|2S) x SO(n)** c = 1U(N|N) $\rightarrow CP^{N-1|N}$ U(N|N)U(N-1|N)xU(1) $U(N-n|N) \times U(n)$ c = -2• note: c^{\vee} (GL(N|N)) = 0 = c^{\vee} (OSP(2S+2|2S))

Examples: Super-Cosets [Candu] [thesis] Families, w. compact form, w.o. H-flux: volume cpct symmetric superspaces

From AdS/CFT to Ghost

Dual of weakly coupled N=4 SYM theory ?

Candidate: Chiral field on CP^{3|4} [Witten 04]

- Has superconformal symmetry PSU(2,2|4)

Symplectic fermions are simplest member $CP^{0|1} = U(1|1)/U(1) \times U(1)$

 \rightarrow Study CP^{N-1|N} as generalization of SF formulas mostly N=2

Plan of Talk

- Symplectic Fermions a Brief Review
- The Chiral Field on Superspace CP^{1|2}
- L Bulk and twisted Neumann boundary conditions
- Properties of the Chiral Field on CP^{1|2}
- **Exact boundary partition functions**
- H Quasi-abelian evolution; Lattice models;

0

D

- Symplectic fermions as cohomology
- Conclusion & Some Open Problems

II Symplectic Fermions: The Bulk

 $S \sim \int d^2 z \left(\partial \eta^+ \bar{\partial} \eta^- + \partial \eta^- \bar{\partial} \eta^+ \right) \, \, {
m Sym. \ is \ manifest}$

Has affine psu(1|1) sym: $F^{\pm}(z) = \partial \eta^{\pm}(z, \bar{z})$ $[F_n^+, F_m^-]_+ = n \, \delta_{n+m,0}$ Action rewritten in terms of currents: $\begin{pmatrix} F^+ \\ F^- \end{pmatrix}$ $S \sim \int d^2 z \, (F^+ \bar{F}^- + F^- \bar{F}^+)$ U(1) x U(1)

 $\begin{array}{ll} \mbox{Possible modification: } \underline{\theta}\mbox{-angle} & \mbox{trivial in bulk} \\ S \sim \int d^2 z \left((1+\theta) F^+ \bar{F}^- + (1-\theta) F^- \bar{F}^+ \right) \end{array} \end{array}$

II Symplectic Fermions: The Bulk

$$S \sim \int d^2 z \left(\partial \eta^+ \bar{\partial} \eta^- + \partial \eta^- \bar{\partial} \eta^+ \right) + \theta \left(\partial \eta^+ \bar{\partial} \eta^- - \partial \eta^- \bar{\partial} \eta^+ \right)$$

Has affine psu(1|1) sym: $F^{\pm}(z) = \partial \eta^{\pm}(z, \bar{z})$ $[F_n^+, F_m^-]_+ = n \,\delta_{n+m,0}$ Action rewritten in terms of currents: $\begin{pmatrix} F^+ \\ F^- \end{pmatrix}$

$$S \sim \int d^2 z \, (F^+ \bar{F}^- + F^- \bar{F}^+)$$

Possible modification: θ -angle trivial in bulk $S \sim \int d^2 z \left((1+\theta) F^+ \bar{F}^- + (1-\theta) F^- \bar{F}^+ \right)$

U(1) x U(1)

II Symplectic Fermions: Boundary $S \sim S_{\text{bulk}} + \vartheta \int dx \eta^+ \partial_x \eta^-$ boundary Implies twisted Neumann boundary conditions: $\partial_y \eta^{\pm} = \pm \Theta \partial_x \eta^{\pm} \mathbf{A} \quad \Theta \sim \theta + \vartheta$ with currents: $\begin{pmatrix} F^+ \\ F^- \end{pmatrix} = \frac{1+B}{1-B} \begin{pmatrix} \bar{F}^+ \\ \bar{F}^- \end{pmatrix} \quad B = \begin{pmatrix} 0 & \Theta \\ -\Theta & 0 \end{pmatrix}$ <u>Results:</u> $\Theta_{\star} \Theta$ 4 ground states In P₀ of u(1|1) $\frac{\Theta_1 \Theta_2}{\mathbf{x} \Theta_2}$ Ground states: $\lambda(\Theta_1, \Theta_2) = \lambda(tr(A_1A_2^{-1}))$ twist fields [Creutzig,Quella,VS] [Creutzig,Roenne]

II The Chiral Field on CP^{N-1|N}

$$CP^{N-1|N} = \left\{ (Z_{\alpha}) = (z_{\alpha}, \eta_{\alpha}) | \varrho^{2} = \bar{Z}_{\alpha} Z^{\alpha} = 1 \right\} / U(1)$$

$$\mathbf{z}_{\alpha}, \eta_{\alpha} \rightarrow$$

$$\mathbf{\omega}_{\alpha}, \mathbf{\omega}_{\eta_{\alpha}} = U(N|N) / U(N-1|N) \times U(1)$$

 \rightarrow 2 parameter family of 2D CFTs;c = -2

$$S_{\rm CP} = \frac{R^2}{2\pi} \int_{\varrho^2 = 1} d^2 z \left(D \bar{Z}_{\alpha} \bar{D} Z^{\alpha} + D Z_{\alpha} \bar{D} \bar{Z}^{\alpha} \right)$$

a - non-dynamical
gauge field $+ \frac{i\theta}{2\pi} \int d^2 z \left(D \bar{a} - \bar{D} a \right)$

D = ∂ - ia θ term non-trivial; θ = θ + 2π

Non-abelian extension of symplectic fermion

II Boundary Conditions for CP^{N-1|N}

Boundary condition in σ -Model on target X is

hypersurface Y + bundle with connection A

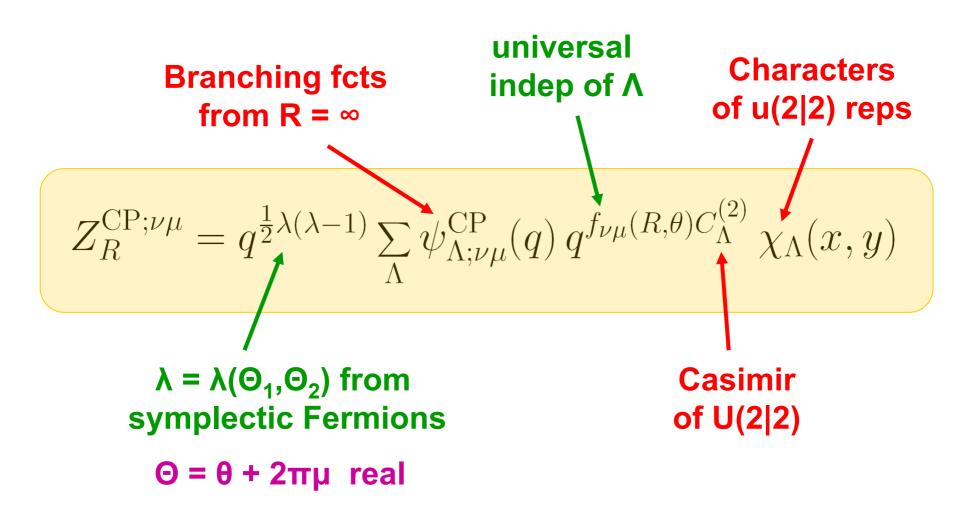
 $\int_{\partial \Sigma} A$

Dirichlet BC \perp to Y; Neumann BC || to Y;

U(N|N) symmetric boundary cond. for CP^{N-1|N} line bundles on Y = CP^{N-1|N} with monopole A_µ Spectrum of sections e.g. N=2; $\mu = 0$ μ integer ~ $(1+14+1) + 48 + 80 + ... + (2n+1) \times 16 +$ superspherical atypicals typicals of U(2|2)

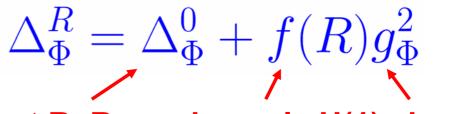
III Boundary conditions & Spectra Count boundary condition changing operators at R = ∞ (free field theory) Built from $Z_{\alpha}, \overline{Z}_{\alpha}, \partial_{x}Z_{\alpha}, ...$ fermionic contr. monopole numbers Euler fct $Z_{R=\infty}^{\text{CP};\nu\mu} = q^{\frac{1}{12}}\phi(q) \oint \frac{du}{u^{\mu-\nu}}\phi(q) \lim_{t\to 1} (1-t^2) \prod_{n=0}^{\infty} \prod_{\alpha\beta=\pm\frac{1}{2}} \frac{1+y^{\alpha}(zu^{-1})^{\beta}q^n}{1-x^{\alpha}(zu)^{\beta}q^n}$ U(1) gauging constraint bosonic contr. for N=2 $\sim \chi_{(1+14+1)} + \chi_{48} + \chi_{80} + \dots + \chi_{ad} + \dots + \chi_{ad} + \dots$

III Result: Spectrum at finite R



Quasi-abelian Evolution of Weights

Free Boson: In boundary theory bulk more involved



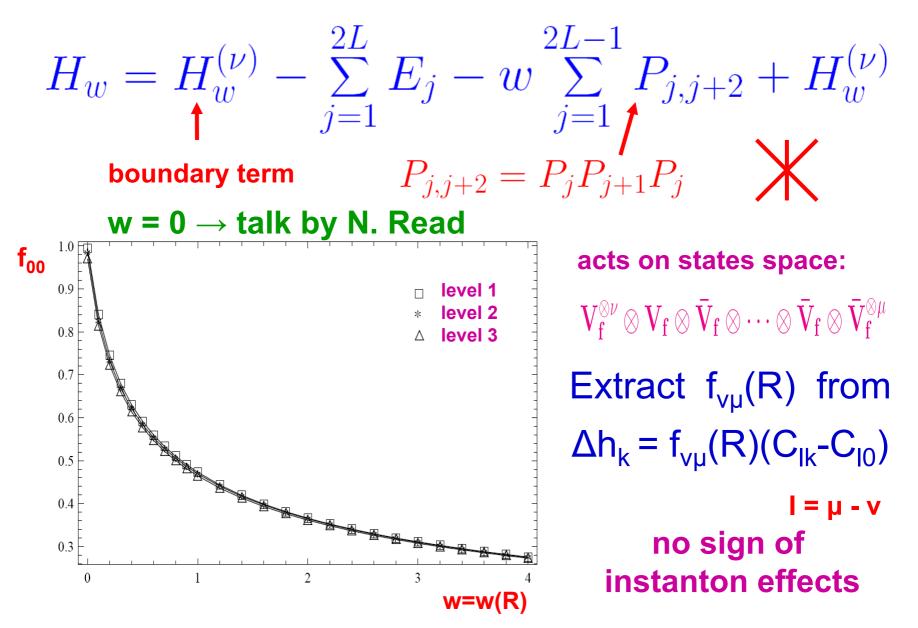
at R=R₀ universal U(1) charge

Prop.: Boundary spectra of CP^{1|2} chiral field :

Deformation of conf. weights is `quasi-abelian' [Bershadsky et al] [Quella,VS,Creutzig] [Candu, Saleur]

e.g. (1+14+1) remains at Δ=0; 48, 80, are lifted

Lattice Models and Numerics



SFermions as Cohomology $S \sim \int d^2 z \left((1+\theta) (J^+ \bar{J}^- + F_1^+ \bar{F}_1^- + F_2^+ \bar{F}_2^-) + (1-\theta) (+ \leftrightarrow -) \right)$ U(2|2): in 3 $\begin{cases} \begin{pmatrix} J^+ & F_1^+ & F_2^+ \\ J^- & Q & U(1) \\ \hline F_1^- & F_1^- \\ F_2^- & U(1|2) \end{pmatrix} \\ x \\ U(1|2) \end{cases}$ <u>Result: [Candu,Creutzig,Mitev,VS]</u> $\Xi = F_1^+ \bar{J}^- + F_1^+ \bar{J}^ S \sim \int d^2 z \left((1+\theta) F_2^+ \bar{F}_2^- + Q(\Xi) + (1-\theta)(+\leftrightarrow -) \right)$ Cohomology of Q arises from states in atypical modules with sdim $\neq 0$ all multiplets of ground states contribute $\rightarrow \lambda(\Theta_1, \Theta_2)$ from SF

Conclusions and Open Problems

- Exact Boundary Partition Functions for CP^{1|2}
 Techniques: QA evolution; Lattice; Q-Cohomology
- For S^{2S+1|S} there is WZ-point at radius R = 1
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()</
 - Is there WZ-point in moduli space of $CP^{N-1|N}$? e.g. psu(N|N) at level k=1 $CP^{0|1} = PSU(1|1)_{k=1}$
- Much generalizes to PCM on PSU(1,1|2)!
 QA evolution, simple subsector
 AdS₃ x S³

It's all Logarithmic CFT!

