(2,0) theory on $\mathbb{R} \times T^5$ at low energies

Måns Henningson

Chalmers University of Technology Göteborg, Sweden What does the spectrum of states look like at low energies (compared to the scale set by the inverse size of the T^5)?

Despite our limited understanding of (2,0) theory [Witten 1995], this question is tractable:

An *ADE*-type (2,0) theory Φ on $\mathbb{R} \times T^5$ is an ultra-violet completion of Yang-Mills theory on $\mathbb{R} \times T^4$ with gauge group $G_{adj} = G/C$, where G is a simply laced and simply connected group with center subgroup C:

Φ	G	C
A_{n-1}	SU(n)	\mathbb{Z}_n
D_{2k+1}	Spin(4k+2)	\mathbb{Z}_{4}
D_{4k+2}	Spin(8k+4)	$\mathbb{Z}_2 imes \mathbb{Z}_2$
D_{4k}	Spin(8k)	$\mathbb{Z}_2 imes \mathbb{Z}_2$
E_6	E_{6}	\mathbb{Z}_3
E_7	E_7	\mathbb{Z}_2
E_8	E_8	1.

And we have at least some understanding of low-energy Yang-Mills theory...

The first few homotopy groups of the gauge group $G_{adj} = G/C$ are

$$\pi_k(G_{adj}) \simeq \begin{cases} 1, & k = 0 \\ C, & k = 1 \\ 1, & k = 2 \\ \mathbb{Z} & k = 3. \end{cases}$$

So the gauge bundle (a principal G_{adj} bundle over T^4) is topologically classified by two characteristic classes :

The *discrete abelian magnetic 't Hooft flux* (second Stieffel-Whitney class)

$$m \in M = H^2(T^4, C)$$

and the *instanton number* (second Chern class)

$$k \in H^4(T^4, \mathbb{Q}) \simeq \mathbb{Q}.$$

These are correlated by

$$k - \frac{1}{2}m \cdot m \in \mathbb{Z} \subset \mathbb{Q}.$$

 $(m \cdot m \text{ is the tensor product of the inner product}$ on $H^2(T^4, \mathbb{Z})$ and the pairing on $C \simeq \Gamma_{\text{weight}} / \Gamma_{\text{root}}$.) Because of the magnetic contribution $Tr(F \land *F)$ to the Yang-Mills energy density, low-energy states are localized on flat connections, F = 0.

A necessary condition for a flat connection is that the (fractional part of the) instanton number $k = \frac{1}{2}m \cdot m$ vanishes in $H^0(T^4, \mathbb{Q})$ modulo $H^0(T^4, \mathbb{Z})$.

A flat connection is characterized by its holonomies

$$U \in \operatorname{Hom}(\pi_1(T^4), G_{\operatorname{adj}})$$

modulo simultaneous conjugation by elements of G_{adj} (connected gauge transformations).

The holonomies U_i , $i = 1, \ldots 4$ commute in $G_{\rm adj}$, but when lifted to

$$\widehat{U} \in \operatorname{Hom}(\pi_1(T^4), G)$$

they are only almost commuting in the sense that

$$\widehat{U}_i \widehat{U}_j \widehat{U}_i^{-1} \widehat{U}_j^{-1} = m_{ij}.$$

(Here $m = m_{ij}dx^i \wedge dx^j$.)

Large gauge transformations are parametrized by $\Gamma = \text{Hom}(\pi_1(T^4), \pi_1(G_{\text{adj}})) \simeq H^1(T^4, C)$ and act on \hat{U}_i by multiplication. The transformation properties of a quantum state is described by the discrete abelian electric 't Hooft flux

$$e \in E = \operatorname{Hom}(\Gamma, U(1)) \simeq H^{3}(T^{4}, C),$$

where we have used the (canonical) isomorphism

 $C \simeq \operatorname{Hom}(C, U(1)).$

Because of the almost commutation relations, certain large gauge transformations are equivalent to conjugation by the holonomies \hat{U}_i , i.e to connected gauge transformations. Quantum states should be invariant under such transformations, which gives the conditions that

$$j = m \cdot e \in H^1(T^4, \mathbb{Q})$$

vanishes modulo $H^1(T^4,\mathbb{Z})$.

Our conclusion is that (2,0) theory on $T^5 = T^4 \times S^1$ has a characteristic class

 $f = m + e \in H^{3}(T^{5}, C) = H^{2}(T^{4}, C) \oplus H^{3}(T^{4}, C),$

and a necessary condition for low-energy states is that

$$0 = \frac{1}{2}f \cdot f = \frac{1}{2}m \cdot m + m \cdot e = k + j$$

$$\in H^{1}(T^{5}, \mathbb{Q}) = H^{0}(T^{4}, \mathbb{Q}) \oplus H^{1}(T^{4}, \mathbb{Q}).$$

More generally, the spectrum of low-energy states should only depend on the orbit of f under the $SL_5(\mathbb{Z})$ mapping class group of T^5 . (Invariance under the $SL_4(\mathbb{Z})$ mapping class group of T^4 , which does not mix m and e, is manifest in the Yang-Mills theory interpretation.)

We will now verify these predictions by explicit computation in some cases, in complete analogy with previous computations on $\mathbb{R} \times T^3$. [Henningson-Wyllard 2007] For a given $m \in H^2(T^4, C)$ such that $k = \frac{1}{2}m \cdot m = 0$, the structure of the moduli space of flat connections \mathcal{M} can in principle be worked out, roughly as for bundles over T^3 [..., Borel-Friedman-Morgan 1999, ...].

It is of the form

$$\mathcal{M} = \bigcup_{\alpha} \mathcal{M}_{\alpha}.$$

Each connected component is of the form

$$\mathcal{M}_{\alpha} = (T^{r_{\alpha}} \times T^{r_{\alpha}} \times T^{r_{\alpha}} \times T^{r_{\alpha}})/W_{\alpha},$$

for some rank r_{α} and some discrete group W_{α} acting on $T^{r_{\alpha}}$.

(Basic example: For m = 0, there is a component \mathcal{M}_0 , such that T^{r_0} is a maximal torus of G and W_0 the corresponding Weyl group.)

The wave function of a low-energy state is supported on the moduli space \mathcal{M} of flat connections.

At a point on the component \mathcal{M}_{α} of \mathcal{M} , the unbroken subalgebra has the form

$$h\simeq s\oplus u(1)^r$$

for some r, $0 \le r \le r_{\alpha}$, and some semi-simple Lie algebra s of rank $r_{\alpha} - r$.

Given h, we let \mathcal{M}^h denote the corresponding subspace of \mathcal{M} . In general, it consists of several connected components:

$$\mathcal{M}^h = \bigcup_a \mathcal{M}^h_a.$$

The components are permuted by large gauge transformations. Diagonalizing the action of these on the space of states supported on \mathcal{M}^h gives a spectrum of electric 't Hooft flux $e \in H^3(T^4, C)$.

A connected component \mathcal{M}_a^h is parametrized by the components of the holonomies \hat{U}_i that belong to the abelian term $u(1)^r$ of h.

The canonical conjugate to the $u(1)^r$ holonomy is the electric field strength E_i . Because of the electric contribution E_iE_i to the Yang-Mills energy density, the wave function of a low-energy state must be constant on each component \mathcal{M}_a^h .

The Yang-Mills energy density also contains a term $\Pi\Pi$, where Π are the canonical conjugates to the covariantly constant modes of the 5*r* abelian scalar fields. There is thus a 5*r*-dimensional continuum of non-normalizable (unless r = 0) "eigenstates" of the Π operators.

Quantizing the covariantly constant modes of the spinor fields gives a further finite degeneracy to the spectrum of low-energy states. We must also quantize the degrees of freedom associated with the semi-simple term s of the unbroken Lie algebra $h = s \oplus u(1)^r$. These parametrize the directions transverse to \mathcal{M}^h in \mathcal{M} .

At low energies, this is modeled by s quantum mechanics with 16 supercharges (i.e. the dimensional reduction to 0 + 1 dimensions of maximally supersymmetric Yang-Mills theory).

This theory has no mass-gap, but is believed to have a finite-dimensional linear space V_s of normalizable zero-energy states.

 V_s has an orthonormal basis with elements in one-to-one correspondence with the set of distinguished markings of the s Dynkin diagram. (A marking of a Dynkin diagram defines a grading $s = \bigoplus_{n \in \mathbb{Z}} s_n$. This is distinguished if dim $s_0 =$ dim $s_1 = \dim s_{-1}$.) [Kac-Smilga 1999]

We have

$$dim V_{s} = \begin{cases}
1, & s \simeq su(n) \\
\# \text{ partitions of } n \\
\text{into distinct odd parts, } s \simeq so(n) \\
\# \text{ partitions of } 2n \\
\text{into distinct even parts, } s \simeq sp(2n) \\
3, & s \simeq E_{6} \\
6, & s \simeq E_{7} \\
11, & s \simeq E_{8} \\
4, & s \simeq F_{4} \\
2, & s \simeq G_{2}.
\end{cases}$$

We introduce the generating functions

$$P(q) = P_{\text{even}}(q) + P_{\text{odd}}(q)$$

= $\sum_{n=0}^{\infty} \dim V_{so(n)}q^n = \prod_{k=1}^{\infty} (1+q^{2k-1})$
= $1+q+q^3+q^4+q^5+q^6+q^7+2q^8+\dots$

and

$$Q(q) = \sum_{n=0}^{\infty} \dim V_{so(2n)} q^{2n} = \prod_{k=1}^{\infty} (1+q^{2k})$$

= 1+q^2+q^4+2q^6+2q^8+3q^{10}+...

The complete spectrum is obtained by summing the contributions for all possible $h \simeq s \oplus u(1)^r$ and all components \mathcal{M}_a^h , each of which contributes dim V_s rank r continua of states.

The prediction from (2,0) theory is that the number $N_f^r(\Phi)$ of rank r continua with a certain value of $f = m + e \in H^3(T^5, C)$ only depends on the $SL_5(\mathbb{Z})$ orbit of f.

The A_r cases are easiest to check, but do not give full justice to the subject.

Work is in progress on the D_{4k+2} and D_{4k} cases, which have the richest structure.

The exceptional E_6 , E_7 , and E_8 cases are left for the future.

So here we will only consider the...

... D_{2k+1} cases, which have $C \simeq \mathbb{Z}_4$.

The 7 different $SL_4(\mathbb{Z})$ orbits of $m \in H^2(T^4, C)$ and how they together with the $4^4 = 256$ different values of $e \in H^3(T^4, C)$ build up the 6 different $SL_5(\mathbb{Z})$ orbits of f are given by

[m]	$[f] = 0_0$	20	22	1 ₀	1_{2}	$1_1 = 1_3$	sum
00	1	15		240			$1 \cdot 256$
20		4	12	48	192		35 · 256
2 ₂			16		240		28 · 256
1_0				16	48	192	$1120 \cdot 256$
1_{2}					64	192	$1120 \cdot 256$
1_1						256	896 · 256
1 ₃						256	896 · 256
sum	1	155	868	19840	138880	888832	4096 · 256

where

$$\begin{array}{rcl}
0_0 &= & [0]\\
2_0 &= & [2dx^1dx^2]\\
2_2 &= & [2dx^1dx^2 + 2dx^3dx^4]\\
1_0 &= & [dx^1dx^2]\\
1_2 &= & [dx^1dx^2 + 2dx^3dx^4]\\
1_1 &= & [dx^1dx^2 + dx^3dx^4]\\
1_3 &= & [dx^1dx^2 + 3dx^3dx^4].
\end{array}$$

We define the generating functions

$$Z_f(q,y) = \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} N_f^r(D_{2k+1}) q^{4k+2} y^r.$$

They are non-vanishing only for $f \cdot f = 0$:

	$[f] = 0_0$	20	2 ₂	1 ₀	1_{2}	$1_1 = 1_3$
$[m] = 0_0$	Z_{0_0}	Z_{2_0}		Z_{1_0}		
2 ₀	-	Z'_{2_0}	$Z_{2_{2}}$	Z'_{1_0}	0	
2 ₂		0	$Z'_{2_{2_{2_{2_{2_{2_{2_{2_{2_{2_{2_{2_{2_$	0	0	
10			-2	Z_{1_0}''	0	0
1 ₂				0	0	0
1_1						0
1 ₃						0

The remaining entries can be computed as described above, and expressed in terms of the functions P_{even} , P_{odd} , Q, and R, where

$$R(q,y) = \prod_{k=1}^{\infty} (1 - yq^{2k})^{-1}$$

= $1 + yq^2 + (y + y^2)q^4 + (y + y^2 + y^3)q^6$
+ $(y + 2y^2 + y^3 + y^4)q^8 + \dots$

They are given by (the q^{4k+2} terms of):

$$\begin{split} Z_{0_0} &= \frac{1}{16} R(q, y) (P_{\text{even}}^{16}(q) + 30P_{\text{even}}^8(q) P_{\text{odd}}^8(q) + P_{\text{odd}}^{16}(q)) \\ &+ \frac{15}{16} R(q, y) (P_{\text{even}}^8(q^2) + 14P_{\text{even}}^4(q^2) P_{\text{odd}}^4(q^2) + P_{\text{odd}}^8(q^2)) \\ Z_{2_0} &= \frac{1}{16} R(q, y) (P_{\text{even}}^{16}(q) + 30P_{\text{even}}^8(q) P_{\text{odd}}^8(q) + P_{\text{odd}}^{16}(q)) \\ &- \frac{1}{16} R(q, y) (P_{\text{even}}^8(q^2) + 14P_{\text{even}}^4(q^2) P_{\text{odd}}^4(q^2) + P_{\text{odd}}^8(q^2)) \\ Z_{2_0}' &= \frac{1}{16} R(q, y) (4P_{\text{even}}^{12}(q) P_{\text{odd}}^4(q) + 24P_{\text{even}}^8(q) P_{\text{odd}}^8(q) + 4P_{\text{even}}^4(q) \\ &+ \frac{3}{16} R(q, y) (4P_{\text{even}}^6(q^2) P_{\text{odd}}^2(q^2) + 8P_{\text{even}}^4(q^2) P_{\text{odd}}^4(q^2) + 4P \\ Z_{2_2} &= \frac{1}{16} R(q, y) (4P_{\text{even}}^{12}(q) P_{\text{odd}}^4(q) + 24P_{\text{even}}^8(q) P_{\text{odd}}^8(q) + 4P_{\text{even}}^4(q) \\ &- \frac{1}{16} R(q, y) (4P_{\text{even}}^6(q^2) P_{\text{odd}}^2(q^2) + 8P_{\text{even}}^4(q^2) P_{\text{odd}}^4(q^2) + 4P \\ Z_{2_2}' &= \frac{1}{16} R(q, y) (16P_{\text{even}}^{10}(q) P_{\text{odd}}^6(q) + 16P_{\text{even}}^6(q) P_{\text{odd}}^{10}(q)) \\ Z_{1_0} &= \frac{1}{8} R(q^2, y) (P_{\text{even}}^8(q) + P_{\text{odd}}^8(q)) \\ &+ \frac{7}{8} R(q^2, y) (P_{\text{even}}^4(q^2) + P_{\text{odd}}^4(q^2)) \\ Z_{1_0}'' &= R(q^2, y) Q(q^2)^4 (P_{\text{even}}^9(q^2) P_{\text{odd}}^3(q^2) + 3P_{\text{even}}^7(q^2) P_{\text{odd}}^5(q^2) \\ &+ 3P_{\text{even}}^6(q^2) P_{\text{even}}^7(q^2) P_{\text{odd}}^6(q^2) \\ Z_{1_0}''' &= R(q^2, y) Q(q^2)^4 (P_{\text{even}}^9(q^2) P_{\text{odd}}^3(q^2) + 3P_{\text{even}}^7(q^2) P_{\text{odd}}^5(q^2) \\ &+ 3P_{\text{even}}^6(q^2) P_{\text{even}}^7(q^2) P_{\text{odd}}^2(q^2)) \end{split}$$

Happily, Z_f only depends on the $SL_5(\mathbb{Z})$ orbit [f] of f:

$$Z_{0_0} = yq^2 + (1 + 2y + y^2 + y^3)q^6 + (32 + 35y + 4y^2 + 3y^3 + y^4 + y^5)q^{10} + (528 + 285y + 71y^2 + 39y^3 + 5y^4 + 3y^5 + y^6 + y^7)q^{14} + \dots$$

$$Z_{2_0} = Z'_{2_0}$$

= $(1+y)q^6$
+ $(32+12y+2y^2+y^3)q^{10}$
+ $(528+198y+46y^2+13y^3+2y^4+y^5)q^{14}+\dots$

$$Z_{2_2} = Z'_{2_2}$$

= q^6
+ $(32 + 7y + y^2)q^{10}$
+ $(528 + 175y + 40y^2 + 7y^3 + y^4)q^{14} + \dots$

$$Z_{1_0} = Z'_{1_0} = Z''_{1_0}$$

$$q^6$$

$$+(10+y)q^{10}$$

$$+(67+11y+y^2)q^{14}+\dots$$

A possible refinement is to decompose the spectrum into unitary representations of the stability subgroup of f in $SL_5(\mathbb{Z})$.

To summarize, we have studied $Spin(4k+2)/\mathbb{Z}_4$ maximally supersymmetric Yang-Mills theory on $\mathbb{R} \times T^4$.

The low-energy spectrum consists of a set of continua of states, characterized by their dimensions 5r and their magnetic and electric 't Hooft fluxes m and e.

In particular, we have verified the $SL_5(\mathbb{Z})$ covariance that follows from the interpretation of the theory as type D_{2k+1} (2,0) theory on $\mathbb{R} \times T^5$. This unifies m and e to a single class f.

For the other simply laced cases, this approach gives highly non-trivial predictions for the structure of the moduli space of flat connections over T^4 .

But more interesting would be to understand the conceptual foundations of (2,0) theory that underly these results. Thank you!