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What does the spectrum of states look like at
low energies (compared to the scale set by the
inverse size of the T5)?

Despite our limited understanding of (2,0) the-
ory [Witten 1995], this question is tractable:

An ADE-type (2,0) theory Φ on R × T5 is an
ultra-violet completion of Yang-Mills theory on
R×T4 with gauge group Gadj = G/C, where G

is a simply laced and simply connected group
with center subgroup C:

Φ G C
An−1 SU(n) Zn

D2k+1 Spin(4k + 2) Z4
D4k+2 Spin(8k + 4) Z2 × Z2
D4k Spin(8k) Z2 × Z2
E6 E6 Z3
E7 E7 Z2
E8 E8 1.

And we have at least some understanding of
low-energy Yang-Mills theory...



The first few homotopy groups of the gauge

group Gadj = G/C are

πk(Gadj) '


1, k = 0
C, k = 1
1, k = 2
Z k = 3.

So the gauge bundle (a principal Gadj bundle

over T4) is topologically classified by two char-

acteristic classes :

The discrete abelian magnetic ’t Hooft flux

(second Stieffel-Whitney class)

m ∈ M = H2(T4, C)

and the instanton number (second Chern class)

k ∈ H4(T4, Q) ' Q.

These are correlated by

k −
1

2
m ·m ∈ Z ⊂ Q.

(m·m is the tensor product of the inner product

on H2(T4, Z) and the pairing on C ' Γweight/Γroot.)



Because of the magnetic contribution Tr(F ∧
∗F ) to the Yang-Mills energy density, low-energy
states are localized on flat connections, F = 0.

A necessary condition for a flat connection is
that the (fractional part of the) instanton num-
ber k = 1

2m ·m vanishes in H0(T4, Q) modulo
H0(T4, Z).

A flat connection is characterized by its holonomies

U ∈ Hom(π1(T
4), Gadj)

modulo simultaneous conjugation by elements
of Gadj (connected gauge transformations).

The holonomies Ui, i = 1, . . .4 commute in
Gadj, but when lifted to

Û ∈ Hom(π1(T
4), G)

they are only almost commuting in the sense
that

ÛiÛjÛ
−1
i Û−1

j = mij.

(Here m = mijdxi ∧ dxj.)



Large gauge transformations are parametrized

by Γ = Hom(π1(T
4), π1(Gadj)) ' H1(T4, C)

and act on Ûi by multiplication. The trans-

formation properties of a quantum state is de-

scribed by the discrete abelian electric ’t Hooft

flux

e ∈ E = Hom(Γ, U(1)) ' H3(T4, C),

where we have used the (canonical) isomor-

phism

C ' Hom(C, U(1)).

Because of the almost commutation relations,

certain large gauge transformations are equiva-

lent to conjugation by the holonomies Ûi, i.e to

connected gauge transformations. Quantum

states should be invariant under such transfor-

mations, which gives the conditions that

j = m · e ∈ H1(T4, Q)

vanishes modulo H1(T4, Z).



Our conclusion is that (2,0) theory on T5 =

T4 × S1 has a characteristic class

f = m+e ∈ H3(T5, C) = H2(T4, C)⊕H3(T4, C),

and a necessary condition for low-energy states

is that

0 =
1

2
f · f =

1

2
m ·m + m · e = k + j

∈ H1(T5, Q) = H0(T4, Q)⊕H1(T4, Q).

More generally, the spectrum of low-energy

states should only depend on the orbit of f un-

der the SL5(Z) mapping class group of T5. (In-

variance under the SL4(Z) mapping class group

of T4, which does not mix m and e, is manifest

in the Yang-Mills theory interpretation.)

We will now verify these predictions by ex-

plicit computation in some cases, in complete

analogy with previous computations on R×T3.

[Henningson-Wyllard 2007]



For a given m ∈ H2(T4, C) such that

k = 1
2m · m = 0, the structure of the moduli

space of flat connections M can in principle

be worked out, roughly as for bundles over T3

[. . . , Borel-Friedman-Morgan 1999, . . . ].

It is of the form

M =
⋃
α
Mα.

Each connected component is of the form

Mα = (T rα × T rα × T rα × T rα)/Wα,

for some rank rα and some discrete group Wα

acting on T rα.

(Basic example: For m = 0, there is a compo-

nent M0, such that T r0 is a maximal torus of

G and W0 the corresponding Weyl group.)



The wave function of a low-energy state is sup-

ported on the moduli space M of flat connec-

tions.

At a point on the component Mα of M, the

unbroken subalgebra has the form

h ' s⊕ u(1)r

for some r, 0 ≤ r ≤ rα, and some semi-simple

Lie algebra s of rank rα − r.

Given h, we let Mh denote the corresponding

subspace of M. In general, it consists of sev-

eral connected components:

Mh =
⋃
a
Mh

a.

The components are permuted by large gauge

transformations. Diagonalizing the action of

these on the space of states supported on Mh

gives a spectrum of electric ’t Hooft flux e ∈
H3(T4, C).



A connected component Mh
a is parametrized

by the components of the holonomies Ûi that

belong to the abelian term u(1)r of h.

The canonical conjugate to the u(1)r holon-

omy is the electric field strength Ei. Because

of the electric contribution EiEi to the Yang-

Mills energy density, the wave function of a

low-energy state must be constant on each

component Mh
a.

The Yang-Mills energy density also contains

a term ΠΠ, where Π are the canonical con-

jugates to the covariantly constant modes of

the 5r abelian scalar fields. There is thus a

5r-dimensional continuum of non-normalizable

(unless r = 0) ”eigenstates” of the Π opera-

tors.

Quantizing the covariantly constant modes of

the spinor fields gives a further finite degener-

acy to the spectrum of low-energy states.



We must also quantize the degrees of freedom

associated with the semi-simple term s of the

unbroken Lie algebra h = s ⊕ u(1)r. These

parametrize the directions transverse to Mh in

M.

At low energies, this is modeled by s quan-

tum mechanics with 16 supercharges (i.e. the

dimensional reduction to 0 + 1 dimensions of

maximally supersymmetric Yang-Mills theory).

This theory has no mass-gap, but is believed

to have a finite-dimensional linear space Vs of

normalizable zero-energy states.

Vs has an orthonormal basis with elements in

one-to-one correspondence with the set of dis-

tinguished markings of the s Dynkin diagram.

(A marking of a Dynkin diagram defines a grad-

ing s = ⊕n∈Zsn. This is distinguished if dim s0 =

dim s1 = dim s−1.) [Kac-Smilga 1999]



We have

dimVs =



1, s ' su(n)
# partitions of n
into distinct odd parts, s ' so(n)
# partitions of 2n
into distinct even parts, s ' sp(2n)
3, s ' E6
6, s ' E7
11, s ' E8
4, s ' F4
2, s ' G2.

We introduce the generating functions

P (q) = Peven(q) + Podd(q)

=
∞∑

n=0

dimVso(n)q
n =

∞∏
k=1

(1 + q2k−1)

= 1 + q + q3 + q4 + q5 + q6 + q7 + 2q8 + . . .

and

Q(q) =
∞∑

n=0

dimVso(2n)q
2n =

∞∏
k=1

(1 + q2k)

= 1 + q2 + q4 + 2q6 + 2q8 + 3q10 + . . .



The complete spectrum is obtained by sum-

ming the contributions for all possible h ' s⊕
u(1)r and all components Mh

a, each of which

contributes dimVs rank r continua of states.

The prediction from (2,0) theory is that the

number Nr
f(Φ) of rank r continua with a cer-

tain value of f = m + e ∈ H3(T5, C) only de-

pends on the SL5(Z) orbit of f .

The Ar cases are easiest to check, but do not

give full justice to the subject.

Work is in progress on the D4k+2 and D4k

cases, which have the richest structure.

The exceptional E6, E7, and E8 cases are left

for the future.

So here we will only consider the...



... D2k+1 cases, which have C ' Z4.

The 7 different SL4(Z) orbits of m ∈ H2(T4, C)
and how they together with the 44 = 256 dif-
ferent values of e ∈ H3(T4, C) build up the 6
different SL5(Z) orbits of f are given by

[m] [f ] = 00 20 22 10 12 11 = 13 sum
00 1 15 240 1 · 256
20 4 12 48 192 35 · 256
22 16 240 28 · 256
10 16 48 192 1120 · 256
12 64 192 1120 · 256
11 256 896 · 256
13 256 896 · 256

sum 1 155 868 19840 138880 888832 4096 · 256

where

00 = [0]

20 = [2dx1dx2]

22 = [2dx1dx2 + 2dx3dx4]

10 = [dx1dx2]

12 = [dx1dx2 + 2dx3dx4]

11 = [dx1dx2 + dx3dx4]

13 = [dx1dx2 + 3dx3dx4].



We define the generating functions

Zf(q, y) =
∞∑

k=0

∞∑
r=0

Nr
f(D2k+1)q

4k+2yr.

They are non-vanishing only for f · f = 0:

[f ] = 00 20 22 10 12 11 = 13
[m] = 00 Z00

Z20
Z10

20 Z′20
Z22

Z′10
0

22 Z′22
0

10 Z′′10
0 0

12 0 0
11 0
13 0

The remaining entries can be computed as de-

scribed above, and expressed in terms of the

functions Peven, Podd, Q, and R, where

R(q, y) =
∞∏

k=1

(1− yq2k)−1

= 1 + yq2 + (y + y2)q4 + (y + y2 + y3)q6

+(y + 2y2 + y3 + y4)q8 + . . .



They are given by (the q4k+2 terms of):

Z00 =
1

16
R(q, y)(P 16

even(q) + 30P 8
even(q)P

8
odd(q) + P 16

odd(q))

+
15

16
R(q, y)(P 8

even(q
2) + 14P 4

even(q
2)P 4

odd(q
2) + P 8

odd(q
2))

Z20 =
1

16
R(q, y)(P 16

even(q) + 30P 8
even(q)P

8
odd(q) + P 16

odd(q))

−
1

16
R(q, y)(P 8

even(q
2) + 14P 4

even(q
2)P 4

odd(q
2) + P 8

odd(q
2))

Z ′
20

=
1

16
R(q, y)(4P 12

even(q)P
4
odd(q) + 24P 8

even(q)P
8
odd(q) + 4P 4

even(q)P
8
odd(q))

+
3

16
R(q, y)(4P 6

even(q
2)P 2

odd(q
2) + 8P 4

even(q
2)P 4

odd(q
2) + 4P 2

even(q
2)P 6

odd(q
2))

Z22 =
1

16
R(q, y)(4P 12

even(q)P
4
odd(q) + 24P 8

even(q)P
8
odd(q) + 4P 4

even(q)P
8
odd(q))

−
1

16
R(q, y)(4P 6

even(q
2)P 2

odd(q
2) + 8P 4

even(q
2)P 4

odd(q
2) + 4P 2

even(q
2)P 6

odd(q
2))

Z ′
22

=
1

16
R(q, y)(16P 10

even(q)P
6
odd(q) + 16P 6

even(q)P
10
odd(q))

Z10 =
1

8
R(q2, y)(P 8

even(q) + P 8
odd(q))

+
7

8
R(q2, y)(P 4

even(q
2) + P 4

odd(q
2))

Z ′
10

=
1

4
R(q2, y)P 4

even(q)P
4
odd(q)

+
3

4
R(q2, y)P 2

even(q
2)P 2

odd(q
2)

Z ′′
10

= R(q2, y)Q(q2)4(P 9
even(q

2)P 3
odd(q

2) + 3P 7
even(q

2)P 5
odd(q

2)

+3P 5
even(q

2)P 7
even(q

2) + P 3
even(q

2)P 9
odd(q

2))



Happily, Zf only depends on the SL5(Z) orbit
[f ] of f :

Z00 = yq2

+(1 + 2y + y2 + y3)q6

+(32 + 35y + 4y2 + 3y3 + y4 + y5)q10

+(528+285y+71y2+39y3+5y4+3y5+y6+y7)q14 + . . .

Z20 = Z ′
20

= (1 + y)q6

+(32 + 12y + 2y2 + y3)q10

+(528 + 198y + 46y2 + 13y3 + 2y4 + y5)q14 + . . .

Z22 = Z ′
22

= q6

+(32 + 7y + y2)q10

+(528 + 175y + 40y2 + 7y3 + y4)q14 + . . .

Z10 = Z ′
10

= Z ′′
10

q6

+(10 + y)q10

+(67 + 11y + y2)q14 + . . .

A possible refinement is to decompose the

spectrum into unitary representations of the

stability subgroup of f in SL5(Z).



To summarize, we have studied Spin(4k+2)/Z4
maximally supersymmetric Yang-Mills theory
on R× T4.

The low-energy spectrum consists of a set of
continua of states, characterized by their di-
mensions 5r and their magnetic and electric
’t Hooft fluxes m and e.

In particular, we have verified the SL5(Z) co-
variance that follows from the interpretation
of the theory as type D2k+1 (2,0) theory on
R × T5. This unifies m and e to a single class
f .

For the other simply laced cases, this approach
gives highly non-trivial predictions for the struc-
ture of the moduli space of flat connections
over T4.

But more interesting would be to understand
the conceptual foundations of (2,0) theory that
underly these results.



Thank you!


